ﻻ يوجد ملخص باللغة العربية
Markov chain analysis is a key technique in reliability engineering. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not---or only partially---known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis evaluates a reliability metric for a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given reliability or performance specification $varphi$. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise reliability? This paper presents various analysis algorithms for parametric Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy $varphi$?, (b) which regions satisfy $varphi$ and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.
We propose a simple technique for verifying probabilistic models whose transition probabilities are parametric. The key is to replace parametric transitions by nondeterministic choices of extremal values. Analysing the resulting parameter-free model
We study finite-state controllers (FSCs) for partially observable Markov decision processes (POMDPs) that are provably correct with respect to given specifications. The key insight is that computing (randomised) FSCs on POMDPs is equivalent to - and
We study the synthesis of mode switching protocols for a class of discrete-time switched linear systems in which the mode jumps are governed by Markov decision processes (MDPs). We call such systems MDP-JLS for brevity. Each state of the MDP correspo
We study a phase transition in parameter learning of Hidden Markov Models (HMMs). We do this by generating sequences of observed symbols from given discrete HMMs with uniformly distributed transition probabilities and a noise level encoded in the out
Many complex systems can be described by population models, in which a pool of agents interacts and produces complex collective behaviours. We consider the problem of verifying formal properties of the underlying mathematical representation of these