ﻻ يوجد ملخص باللغة العربية
In the laser --- electron beam head-on interaction electron energy can decrease due to radiation reaction, i.e. emission of photons. For 10--100~fs laser pulses and for the laser field strength up to the pair photoproduction threshold, it is shown that one can calculate the resulting electron and photon spectra as if the electron beam travels through a constant magnetic field. The strength of this constant field and the interaction time are found as functions of the laser field amplitude and duration. Using of constant field approximation can make a theoretical analysis of stochasticity of the radiation reaction much simpler in comparison with the case of alternating laser field, also, it allows one to get electron and photon spectra much cheaper numerically than by particle-in-cell simulations.
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron be
Charged particles accelerated by electromagnetic fields emit radiation, which must, by the conservation of momentum, exert a recoil on the emitting particle. The force of this recoil, known as radiation reaction, strongly affects the dynamics of ultr
It is commonly assumed that in ultrastrong laser fields, when the strong field parameter of the laser field $xi$ is larger than one, the electron radiation is well described by the local constant field approximation (LCFA). We discuss the failure of
We investigate the generation of twin $gamma$ ray beams in collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam by using particle-in-cell simulation. We consider the composed target of a homogeneous underde
We report on an experimental study on the interaction of a high-contrast 40 fs duration 2.5 TW laser pulse with an argon cluster target. A high-charge, homogeneous, large divergence electron beam with moderate kinetic energy (~2 MeV) is observed in t