ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated nanoscale analysis of the emission from wurtzite versus zincblende (In,Ga)As/GaAs nanowire core-shell quantum wells

142   0   0.0 ( 0 )
 نشر من قبل Jonas L\\\"ahnemann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While the properties of wurtzite GaAs have been extensively studied during the past decade, little is known about the influence of the crystal polytype on ternary (In,Ga)As quantum well structures. We address this question with a unique combination of correlated, spatially-resolved measurement techniques on core-shell nanowires that contain extended segments of both the zincblende and wurtzite polytypes. Cathodoluminescence hyperspectral imaging reveals a blueshift of the quantum well emission energy by $75pm15$ meV in the wurtzite polytype segment. Nanoprobe x-ray diffraction and atom probe tomography enable $mathbf{k}cdotmathbf{p}$ calculations for the specific sample geometry to reveal two comparable contributions to this shift. First, there is a 30% drop in In mole fraction going from the zincblende to the wurtzite segment. Second, the quantum well is under compressive strain, which has a much stronger impact on the hole ground state in the wurtzite than in the zincblende segment. Our results highlight the role of the crystal structure in tuning the emission of (In,Ga)As quantum wells and pave the way to exploit the possibilities of three-dimensional bandgap engineering in core-shell nanowire heterostructures. At the same time, we have demonstrated an advanced characterization toolkit for the investigation of semiconductor nanostructures.

قيم البحث

اقرأ أيضاً

We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.
Spin dephasing via the spin-orbit interaction (SOI) is a major mechanism limiting the electron spin lifetime in III-V zincblende quantum wells. The dephasing can be suppressed in GaAs(111) quantum wells by applying an electric field. The suppression has been attributed to the compensation of the intrinsic SOI associated by the bulk inversion asymmetry (BIA) of the GaAs lattice by a structural induced asymmetry (SIA) SOI term induced by an electric field. We provide direct experimental evidence for this mechanism by demonstrating the transition between the BIA-dominated to a SIA-dominated regime via photoluminescence measurements carried out over a wide range of applied fields. Spin lifetimes exceeding 100~ns are obtained near the compensating electric field, thus making GaAs (111) QWs excellent candidates for the electrical storage and manipulation of spins.
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of considerable technological importance but remains a challenge due to the amphoteric behavior of the dopant atoms. Here we show that placing a narrow GaAs quantum well in the A lAs shell effectively getters residual carbon acceptors leading to an emph{unintentional} p-type doping. Magneto-optical studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined emission. Theoretical calculations of NW electronic structure confirm quantum confinement of carriers at the core/shell interface due to the presence of ionized carbon acceptors in the 1~nm GaAs layer in the shell. Micro-photoluminescence in high magnetic field shows a clear signature of avoided crossings of the $n=0$ Landau level emission line with the $n=2$ Landau level TO phonon replica. The coupling is caused by the resonant hole-phonon interaction, which points to a large 2D hole density in the structure.
We report on the direct correlation between the structural and optical properties of single, as-grown core-multi-shell GaAs/In$_{0.15}$Ga$_{0.85}$As/GaAs/AlAs/GaAs nanowires. Fabricated by molecular beam epitaxy on a pre-patterned Si(111) substrate, on a row of well separated nucleation sites, it was possible to access individual nanowires in the as-grown geometry. The polytype distribution along the growth axis of the nanowires was revealed by synchrotron-based nanoprobe X-ray diffraction techniques monitoring the axial 111 Bragg reflection. For the same nanowires, the spatially-resolved emission properties were obtained by cathodoluminescence hyperspectral linescans in a scanning electron microscope. Correlating both measurements, we reveal a blueshift of the shell quantum well emission energy combined with an increased emission intensity for segments exhibiting a mixed structure of alternating wurtzite and zincblende stacking compared with the pure crystal polytypes. The presence of this mixed structure was independently confirmed by cross-sectional transmission electron microscopy.
We compare the electronic characteristics of nanowire field-effect transistors made using single pure wurtzite and pure zincblende InAs nanowires with nominally identical diameter. We compare the transfer characteristics and field-effect mobility ver sus temperature for these devices to better understand how differences in InAs phase govern the electronic properties of nanowire transistors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا