ﻻ يوجد ملخص باللغة العربية
Over the last decades X-ray spectroscopy has proven to be a powerful tool for the estimation of black hole spin and several other key parameters in dozens of AGN and black hole X-ray binaries. In this White Paper, we discuss the observational and theoretical challenges expected in the exploration, discovery, and study of astrophysical black holes in the next decade. We focus on the case of accreting black holes and their electromagnetic signatures, with particular emphasis on the measurement of the relativistic reflection component in their X-ray spectra.
In the past decades, the phenomenology of fast time variations of high-energy flux from black-hole binaries has increased, thanks to the availability of more and more sophisticated space observatories, and a complex picture has emerged. Recently, mod
The black hole MAXI J1820+070 was discovered during its 2018 outburst and was extensively monitored across the electromagnetic spectrum. Following the detection of relativistic radio jets, we obtained four Chandra X-ray observations taken between 201
We report on the spectroscopic analysis of the black hole binary GX 339-4 during its recent 2017-2018 outburst, observed simultaneously by the Swift and NuSTAR observatories. Although during this particular outburst the source failed to make state tr
Relativistic reflection features are commonly observed in the X-ray spectra of accreting black holes. In the presence of high quality data and with the correct astrophysical model, X-ray reflection spectroscopy can be quite a powerful tool to probe t
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow and the g