ﻻ يوجد ملخص باللغة العربية
In a distributed storage system, private information retrieval (PIR) guarantees that a user retrieves one file from the system without revealing any information about the identity of its interested file to any individual server. In this paper, we investigate $(N,K,M)$ coded sever model of PIR, where each of $M$ files is distributed to the $N$ servers in the form of $(N,K)$ maximum distance separable (MDS) code for some $N>K$ and $M>1$. As a result, we propose a new capacity-achieving $(N,K,M)$ coded linear PIR scheme such that it can be implemented with file length $frac{K(N-K)}{gcd(N,K)}$, which is much smaller than the previous best result $Kbig(frac{N}{gcd(N,K)}big)^{M-1}$. Notably, among all the capacity-achieving coded linear PIR schemes, we show that the file length is optimal if $M>biglfloor frac{K}{gcd(N,K)}-frac{K}{N-K}bigrfloor+1$, and within a multiplicative gap $frac{K}{gcd(N,K)}$ of a lower bound on the minimum file length otherwise.
This paper investigates reducing sub-packetization of capacity-achieving schemes for uncoded Storage Constrained Private Information Retrieval (SC-PIR) systems. In the SC-PIR system, a user aims to retrieve one out of $K$ files from $N$ servers while
We consider constructing capacity-achieving linear codes with minimum message size for private information retrieval (PIR) from $N$ non-colluding databases, where each message is coded using maximum distance separable (MDS) codes, such that it can be
In the classical private information retrieval (PIR) setup, a user wants to retrieve a file from a database or a distributed storage system (DSS) without revealing the file identity to the servers holding the data. In the quantum PIR (QPIR) setting,
In quantum private information retrieval (QPIR), a user retrieves a classical file from multiple servers by downloading quantum systems without revealing the identity of the file. The QPIR capacity is the maximal achievable ratio of the retrieved fil
This work investigates a system where each user aims to retrieve a scalar linear function of the files of a library, which are Maximum Distance Separable coded and stored at multiple distributed servers. The system needs to guarantee robust decoding