ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-intrusive speech quality assessment using neural networks

185   0   0.0 ( 0 )
 نشر من قبل Anderson Avila
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimating the perceived quality of an audio signal is critical for many multimedia and audio processing systems. Providers strive to offer optimal and reliable services in order to increase the user quality of experience (QoE). In this work, we present an investigation of the applicability of neural networks for non-intrusive audio quality assessment. We propose three neural network-based approaches for mean opinion score (MOS) estimation. We compare our results to three instrumental measures: the perceptual evaluation of speech quality (PESQ), the ITU-T Recommendation P.563, and the speech-to-reverberation energy ratio. Our evaluation uses a speech dataset contaminated with convolutive and additive noise, labeled using a crowd-based QoE evaluation, evaluated with Pearson correlation with MOS labels, and mean-squared-error of the estimated MOS. Our proposed approaches outperform the aforementioned instrumental measures, with a fully connected deep neural network using Mel-frequency features providing the best correlation (0.87) and the lowest mean squared error (0.15)



قيم البحث

اقرأ أيضاً

The perceptual task of speech quality assessment (SQA) is a challenging task for machines to do. Objective SQA methods that rely on the availability of the corresponding clean reference have been the primary go-to approaches for SQA. Clearly, these m ethods fail in real-world scenarios where the ground truth clean references are not available. In recent years, non-intrusive methods that train neural networks to predict ratings or scores have attracted much attention, but they suffer from several shortcomings such as lack of robustness, reliance on labeled data for training and so on. In this work, we propose a new direction for speech quality assessment. Inspired by humans innate ability to compare and assess the quality of speech signals even when they have non-matching contents, we propose a novel framework that predicts a subjective relative quality score for the given speech signal with respect to any provided reference without using any subjective data. We show that neural networks trained using our framework produce scores that correlate well with subjective mean opinion scores (MOS) and are also competitive to methods such as DNSMOS, which explicitly relies on MOS from humans for training networks. Moreover, our method also provides a natural way to embed quality-related information in neural networks, which we show is helpful for downstream tasks such as speech enhancement.
Neural network architectures are at the core of powerful automatic speech recognition systems (ASR). However, while recent researches focus on novel model architectures, the acoustic input features remain almost unchanged. Traditional ASR systems rel y on multidimensional acoustic features such as the Mel filter bank energies alongside with the first, and second order derivatives to characterize time-frames that compose the signal sequence. Considering that these components describe three different views of the same element, neural networks have to learn both the internal relations that exist within these features, and external or global dependencies that exist between the time-frames. Quaternion-valued neural networks (QNN), recently received an important interest from researchers to process and learn such relations in multidimensional spaces. Indeed, quaternion numbers and QNNs have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with up to four times less learning parameters than real-valued models. We propose to investigate modern quaternion-valued models such as convolutional and recurrent quaternion neural networks in the context of speech recognition with the TIMIT dataset. The experiments show that QNNs always outperform real-valued equivalent models with way less free parameters, leading to a more efficient, compact, and expressive representation of the relevant information.
Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a golden reference considerabl y restricts the practicality of such assessment tools in real-world scenarios since the clean reference usually cannot be accessed. On the other hand, human beings can readily evaluate the speech quality without any reference (e.g., mean opinion score (MOS) tests), implying the existence of an objective and non-intrusive (no clean reference needed) quality assessment mechanism. In this study, we propose a novel end-to-end, non-intrusive speech quality evaluation model, termed Quality-Net, based on bidirectional long short-term memory. The evaluation of utterance-level quality in Quality-Net is based on the frame-level assessment. Frame constraints and sensible initializations of forget gate biases are applied to learn meaningful frame-level quality assessment from the utterance-level quality label. Experimental results show that Quality-Net can yield high correlation to PESQ (0.9 for the noisy speech and 0.84 for the speech processed by speech enhancement). We believe that Quality-Net has potential to be used in a wide variety of applications of speech signal processing.
We introduce Amortized Neural Networks (AmNets), a compute cost- and latency-aware network architecture particularly well-suited for sequence modeling tasks. We apply AmNets to the Recurrent Neural Network Transducer (RNN-T) to reduce compute cost an d latency for an automatic speech recognition (ASR) task. The AmNets RNN-T architecture enables the network to dynamically switch between encoder branches on a frame-by-frame basis. Branches are constructed with variable levels of compute cost and model capacity. Here, we achieve variable compute for two well-known candidate techniques: one using sparse pruning and the other using matrix factorization. Frame-by-frame switching is determined by an arbitrator network that requires negligible compute overhead. We present results using both architectures on LibriSpeech data and show that our proposed architecture can reduce inference cost by up to 45% and latency to nearly real-time without incurring a loss in accuracy.
Speaker Diarization is the problem of separating speakers in an audio. There could be any number of speakers and final result should state when speaker starts and ends. In this project, we analyze given audio file with 2 channels and 2 speakers (on s eparate channel). We train Neural Network for learning when a person is speaking. We use different type of Neural Networks specifically, Single Layer Perceptron (SLP), Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Convolution Neural Network (CNN) we achieve $sim$92% of accuracy with RNN. The code for this project is available at https://github.com/vishalshar/SpeakerDiarization_RNN_CNN_LSTM
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا