ترغب بنشر مسار تعليمي؟ اضغط هنا

The trail of water and the delivery of volatiles to habitable planets

106   0   0.0 ( 0 )
 نشر من قبل Klaus Martin Pontoppidan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Water is fundamental to our understanding of the evolution of planetary systems and the delivery of volatiles to the surfaces of potentially habitable planets. Yet, we currently have essentially no facilities capable of observing this key species comprehensively. With this white paper, we argue that we need a relatively large, cold space-based observatory equipped with a high-resolution spectrometer, in the mid- through far-infrared wavelength range (25-600~$mu$m) in order to answer basic questions about planet formation, such as where the Earth got its water, how giant planets and planetesimals grow, and whether water is generally available to planets forming in the habitable zone of their host stars.

قيم البحث

اقرأ أيضاً

From modeling the evolution of disks of planetesimals under the influence of planets, it has been shown that the mass of water delivered to the Earth from beyond Jupiters orbit could be comparable to the mass of terrestrial oceans. A considerable por tion of the water could have been delivered to the Earths embryo, when its mass was smaller than the current mass of the Earth. While the Earths embryo mass was growing to half the current mass of the Earth, the mass of water delivered to the embryo could be near 30% of the total amount of water delivered to the Earth from the feeding zone of Jupiter and Saturn. Water of the terrestrial oceans could be a result of mixing the water from several sources with higher and lower D/H ratios. The mass of water delivered to Venus from beyond Jupiters orbit was almost the same as that for the Earth, if normalized to unit mass of the planet. The analogous per-unit mass of water delivered to Mars was two-three times as much as that for the Earth. The mass of water delivered to the Moon from beyond Jupiters orbit could be less than that for the Earth by a factor not more than 20.
In the present research, we study the effects of a single giant planet in the dynamical evolution of water-rich embryos and planetesimals, located beyond the snow line of systems around Sun-like stars, in order to determine what kind of terrestrial-l ike planets could be formed in the habitable zone (hereafter HZ) of these systems. To do this, we carry out N-body simulations of planetary accretion, considering that the gas has been already dissipated from the disk and a single giant planet has been formed beyond the snow line of the system, at 3 au. We find that a giant planet with a value of mass between Saturn-mass and Jupiter-mass, represents a limit from which the amount of water-rich embryos that moves inward from beyond the snow line starts to decrease. From this, our research suggests that giant planets more massive than one Jupiter-mass become efficient dynamical barriers to inward-migrating water-rich embryos. Moreover, we infer that the number of these embryos that survive in the HZ significantly decreases for systems that host a giant planet more massive than one Jupiter-mass. This result has important consequences concerning the formation of terrestrial-like planets in the HZ with very high water contents and could provide a selection criteria in the search of potentially habitable exoplanets in systems that host a gaseous giant around solar-type stars.
Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at intermediate distances ranging from $sim$1 au to 2 au. Our study focusses on the formation and evolution of terrestrial-like planets and water delivery in the habitable zone (HZ) of the system. Our goal is also to analyse the long-term dynamical stability of the resulting systems. A semi-analytic model was used to define the properties of a protoplanetary disk that produces a Jupiter-mass planet around the snow line, which is located at $sim$2.7 au for a solar-mass star. Then, it was used to describe the evolution of embryos and planetesimals during the gaseous phase up to the formation of the Jupiter-mass planet, and we used the results as the initial conditions to carry out N-body simulations of planetary accretion. Our simulations produce three different classes of planets in the HZ: water worlds, with masses between 2.75 $M_{oplus}$ and 3.57 $M_{oplus}$ and water contents of 58% and 75% by mass, terrestrial-like planets, with masses ranging from 0.58 $M_{oplus}$ to 3.8 $M_{oplus}$ and water contents less than 1.2% by mass, and dry worlds, simulations of which show no water. A relevant result suggests the efficient coexistence in the HZ of a Jupiter-mass planet and a terrestrial-like planet with a percentage of water by mass comparable to the Earth. Moreover, our study indicates that these planetary systems are dynamically stable for at least 1 Gyr. Systems with a Jupiter-mass planet located at 1.5 au - 2 au around solar-type stars are of astrobiological interest. These systems are likely to harbour terrestrial-like planets in the HZ with a wide diversity of water contents.
The discovery of many planets using the Kepler telescope includes ten planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable-zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47 making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparametrized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.
95 - K. Wagner , A. Boehle , P. Pathak 2021
Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, Alpha Centauri. Based on 75-80% of the best quality images from 100 hours of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of Alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around Alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا