ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Radio Burst Tomography of the Unseen Universe

93   0   0.0 ( 0 )
 نشر من قبل Vikram Ravi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vikram Ravi




اسأل ChatGPT حول البحث

The discovery of Fast Radio Bursts (FRBs) at cosmological distances has opened a powerful window on otherwise unseen matter in the Universe. In the 2020s, observations of $>10^{4}$ FRBs will assess the baryon contents and physical conditions in the hot/diffuse circumgalactic, intracluster, and intergalactic medium, and test extant compact-object dark matter models.



قيم البحث

اقرأ أيضاً

We report on the host association of FRB 20181030A, a repeating fast radio burst (FRB) with a low dispersion measure (DM, 103.5 pc cm$^{-3}$) discovered by CHIME/FRB Collaboration et al. (2019a). Using baseband voltage data saved for its repeat burst s, we localize the FRB to a sky area of 5.3 sq. arcmin (90% confidence). Within the FRB localization region, we identify NGC 3252 as the most promising host, with an estimated chance coincidence probability $< 2.5 times 10^{-3}$. Moreover, we do not find any other galaxy with M$_{r} < -15$ AB mag within the localization region to the maximum estimated FRB redshift of 0.05. This rules out a dwarf host 5 times less luminous than any FRB host discovered to date. NGC 3252 is a star-forming spiral galaxy, and at a distance of $approx$ 20 Mpc, it is one of the closest FRB hosts discovered thus far. From our archival radio data search, we estimate a 3$sigma$ upper limit on the luminosity of a persistent compact radio source (source size $<$ 0.3 kpc at 20 Mpc) at 3 GHz to be ${rm 2 times 10^{26} erg~s^{-1} Hz^{-1}}$, at least 1500 times smaller than that of the FRB 20121102A persistent radio source. We also argue that a population of young millisecond magnetars alone cannot explain the observed volumetric rate of repeating FRBs. Finally, FRB 20181030A is a promising source for constraining FRB emission models due to its proximity, and we strongly encourage its multi-wavelength follow-up.
We report on the discovery of FRB 20200120E, a repeating fast radio burst (FRB) with low dispersion measure (DM), detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB project. The source DM of 87.82 pc cm$^{-3}$ is the lowest re corded from an FRB to date, yet is significantly higher than the maximum expected from the Milky Way interstellar medium in this direction (~ 50 pc cm$^{-3}$). We have detected three bursts and one candidate burst from the source over the period 2020 January-November. The baseband voltage data for the event on 2020 January 20 enabled a sky localization of the source to within $simeq$ 14 sq. arcmin (90% confidence). The FRB localization is close to M81, a spiral galaxy at a distance of 3.6 Mpc. The FRB appears on the outskirts of M81 (projected offset $sim$ 20 kpc) but well inside its extended HI and thick disks. We empirically estimate the probability of chance coincidence with M81 to be $< 10^{-2}$. However, we cannot reject a Milky Way halo origin for the FRB. Within the FRB localization region, we find several interesting cataloged M81 sources and a radio point source detected in the Very Large Array Sky Survey (VLASS). We searched for prompt X-ray counterparts in Swift/BAT and Fermi/GBM data, and for two of the FRB 20200120E bursts, we rule out coincident SGR 1806$-$20-like X-ray bursts. Due to the proximity of FRB 20200120E, future follow-up for prompt multi-wavelength counterparts and sub-arcsecond localization could be constraining of proposed FRB models.
We investigate whether the sky rate of Fast Radio Bursts depends on Galactic latitude using the first catalog of Fast Radio Bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project. We first se lect CHIME/FRB events above a specified sensitivity threshold in consideration of the radiometer equation, and then compare these detections with the expected cumulative time-weighted exposure using Anderson-Darling and Kolmogrov-Smirnov tests. These tests are consistent with the null hypothesis that FRBs are distributed without Galactic latitude dependence ($p$-values distributed from 0.05 to 0.99, depending on completeness threshold). Additionally, we compare rates in intermediate latitudes ($|b| < 15^circ$) with high latitudes using a Bayesian framework, treating the question as a biased coin-flipping experiment -- again for a range of completeness thresholds. In these tests the isotropic model is significantly favored (Bayes factors ranging from 3.3 to 14.2). Our results are consistent with FRBs originating from an isotropic population of extragalactic sources.
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key obse rvable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxys redshift to be $z=0.492pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $Omega_{mathrm{IGM}}=4.9 pm 1.3%$, in agreement with the expectation from WMAP, and including all of the so-called missing baryons. The $sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent non-repeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent non-repeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs - comprising a large fraction of the overall population - with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of $alpha=-1.40pm0.11(textrm{stat.})^{+0.06}_{-0.09}(textrm{sys.})$, consistent with the $-3/2$ expectation for a non-evolving population in Euclidean space. We find $alpha$ is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of $[820pm60(textrm{stat.})^{+220}_{-200}({textrm{sys.}})]/textrm{sky}/textrm{day}$ above a fluence of 5 Jy ms at 600 MHz, with scattering time at $600$ MHz under 10 ms, and DM above 100 pc cm$^{-3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا