ﻻ يوجد ملخص باللغة العربية
The optical properties of the new iron-based superconductor CsCa$_2$Fe$_4$As$_4$F$_2$ with $T_c sim 29$~K have been determined. In the normal state a good description of the low-frequency response is obtained with a superposition of two Drude components of which one has a very low scattering rate (narrow Drude-peak) and the other a rather large one (broad Drude-peak). Well below $T_c sim 29$~K, a pronounced gap feature is observed which involves a complete suppression of the optical conductivity below $sim$ 110~cm$^{-1}$ and thus is characteristic of a nodeless superconducting state. The optical response of the broad Drude-component can be described with a dirty-limit Mattis-Bardeen-type response with a single isotropic gap of $2Delta simeq 14$~meV. To the contrary, the response of the narrow Drude-component is in the ultra-clean-limit and its entire spectral weight is transferred to the zero-frequency $delta(omega)$ function that accounts for the loss-free response of the condensate. These observations provide clear evidence for a band-selective coexistence of clean- and dirty-limit superconductivity with nodeless gaps in CsCa$_2$Fe$_4$As$_4$F$_2$.
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31.
We find evidence that the newly discovered Fe-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ ($T_c~=~33.36(7)$~K) displays multigap superconductivity with line nodes. Transverse field muon spin rotation ($mu$SR) measurements show that the temperature
CsCa$_2$Fe$_4$As$_4$F$_2$ is a newly discovered iron-based superconductor with $T_mathrm{c}sim$ 30 K containing double Fe$_2$As$_2$ layers that are separated by insulating Ca$_2$F$_2$ spacer layers. Here we report the transport and magnetization meas
We report resistance and elastoresistance measurements on (Ba$_{0.5}$K$_{0.5}$)Fe$_2$As$_2$, CaKFe$_4$As$_4$, and KCa$_2$Fe$_4$As$_4$F$_2$. The Fe-site symmetry is $D_{2d}$ in the first compound but $C_{2v}$ in the latter two, which lifts the degener
We use polarized inelastic neutron scattering to study the spin-excitations anisotropy in the bilayer iron-based superconductor CaKFe$_4$As$_4$ ($T_c$ = 35 K). In the superconducting state, both odd and even $L-$modulations of spin resonance have bee