ترغب بنشر مسار تعليمي؟ اضغط هنا

A String Dual for Partially Topological Chern-Simons-Matter Theories

114   0   0.0 ( 0 )
 نشر من قبل Andrey Feldman
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a string dual of a partially topological $U(N)$ Chern-Simons-matter (PTCSM) theory recently introduced by Aganagic, Costello, McNamara and Vafa. In this theory, fundamental matter fields are coupled to the Chern-Simons theory in a way that depends only on a transverse holomorphic structure on a manifold; they are not fully dynamical, but the theory is also not fully topological. One description of this theory arises from topological strings on the deformed conifold $T^* S^3$ with $N$ Lagrangian 3-branes and additional coisotropic `flavor 5-branes. Applying the idea of the Gopakumar-Vafa duality to this setup, we suggest that this has a dual description as a topological string on the resolved conifold ${cal O} left( - 1 right) oplus {cal O} left( - 1 right) rightarrow mathbb{CP}^1$, in the presence of coisotropic 5-branes. We test this duality by computing the annulus amplitude on the deformed conifold and the disc amplitude on the resolved conifold via equivariant localization, and we find an agreement between the two. We find a small discrepancy between the topological string results and the large $N$ limit of the partition function of the PTCSM theory arising from the deformed conifold, computed via field theory localization by a method proposed by Aganagic et al. We discuss possible origins of the mismatch.



قيم البحث

اقرأ أيضاً

We study large $N$ 2+1 dimensional fermions in the fundamental representation of an $SU(N)_k$ Chern Simons gauge group in the presence of a uniform background magnetic field for the $U(1)$ global symmetry of this theory. The magnetic field modifies t he Schwinger Dyson equation for the propagator in an interesting way; the product between the self energy and the Greens function is replaced by a Moyal star product. Employing a basis of functions previously used in the study of non-commutative solitons, we are able to exactly solve the Schwinger Dyson equation and so determine the fermion propagator. The propagator has a series of poles (and no other singularities) whose locations yield a spectrum of single particle energies at arbitrary t Hooft coupling and chemical potential. The usual free fermion Landau levels spectrum is shifted and broadened out; we compute the shifts and widths of these levels at arbitrary tHooft coupling. As a check on our results we independently solve for the propagators of the conjecturally dual theory of Chern Simons gauged large $N$ fundamental Wilson Fisher bosons also in a background magnetic field but this time only at zero chemical potential. The spectrum of single particle states of the bosonic theory precisely agrees with those of the fermionic theory under Bose-Fermi duality.
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results to propose the mapping of Wilson loops under Seiberg-like dualities and verify that the proposed map agrees with the exact results for expectation values of circular Wilson loops. In some cases we also relate the algebra of Wilson loops to the equivariant quantum K-ring of certain quasi projective varieties. This generalizes the connection between the Verlinde algebra and the quantum cohomology of the Grassmannian found by Witten.
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters dev oted to different questions and techniques. Some new results, perspectives and speculations are also presented. We hope this might serve as a baseline for further studies of this topic.
It has been conjectured that 3d fermions minimally coupled to Chern-Simons gauge fields are dual to 3d critical scalars, also minimally coupled to Chern-Simons gauge fields. The large $N$ arguments for this duality can formally be used to show that C hern-Simons-gauged {it critical} (Gross-Neveu) fermions are also dual to gauged `{it regular} scalars at every order in a $1/N$ expansion, provided both theories are well-defined (when one fine-tunes the two relevant parameters of each of these theories to zero). In the strict large $N$ limit these `quasi-bosonic theories appear as fixed lines parameterized by $x_6$, the coefficient of a sextic term in the potential. While $x_6$ is an exactly marginal deformation at leading order in large $N$, it develops a non-trivial $beta$ function at first subleading order in $1/N$. We demonstrate that the beta function is a cubic polynomial in $x_6$ at this order in $1/N$, and compute the coefficients of the cubic and quadratic terms as a function of the t Hooft coupling. We conjecture that flows governed by this leading large $N$ beta function have three fixed points for $x_6$ at every non-zero value of the t Hooft coupling, implying the existence of three distinct regular bosonic and three distinct dual critical fermionic conformal fixed points, at every value of the t Hooft coupling. We analyze the phase structure of these fixed point theories at zero temperature. We also construct dual pairs of large $N$ fine-tuned renormalization group flows from supersymmetric ${cal N}=2$ Chern-Simons-matter theories, such that one of the flows ends up in the IR at a regular boson theory while its dual partner flows to a critical fermion theory. This construction suggests that the duality between these theories persists at finite $N$, at least when $N$ is large.
We present new circular Wilson loops in three-dimensional N=4 quiver Chern-Simons-matter theory on S^3. At any given node of the quiver, a two-parameter family of operators can be obtained by opportunely deforming the 1/4 BPS Gaiotto-Yin loop. Includ ing then adjacent nodes, the coupling to the bifundamental matter fields allows to enlarge this family and to construct loop operators based on superconnections. We discuss their classification, which depends on both discrete data and continuous parameters subject to an identification. The resulting moduli spaces are conical manifolds, similar to the conifold of the 1/6 BPS loops of the ABJ(M) theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا