ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainties in gas kinematics arising from stellar continuum modelling in integral field spectroscopy data: the case of NGC2906 observed with MUSE/VLT

35   0   0.0 ( 0 )
 نشر من قبل Enrica Bellocchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how the use of several stellar subtraction methods and line fitting approaches can affect the derivation of the main kinematic parameters (velocity and velocity dispersion fields) of the ionized gas component. The target of this work is the nearby galaxy NGC 2906, observed with the MUSE instrument at Very Large Telescope. A sample of twelve spectra is selected from the inner (nucleus) and outer (spiral arms) regions, characterized by different ionization mechanisms. We compare three different methods to subtract the stellar continuum (FIT3D, STARLIGHT and pPXF), combined with one of the following stellar libraries: MILES, STELIB and GRANADA+MILES. The choice of the stellar subtraction method is the most important ingredient affecting the derivation of the gas kinematics, followed by the choice of the stellar library and by the line fitting approach. In our data, typical uncertainties in the observed wavelength and width of the Halpha and [NII] lines are of the order of <deltalambda>_rms sim 0.1AA and <deltasigma>_rms sim 0.2AA (sim 5 and 10km/s, respectively). The results obtained from the [NII] line seem to be slightly more robust, as it is less affected by stellar absorption than Halpha. All methods considered yield statistically consistent measurements once a mean systemic contribution Deltabarlambda=Deltabarsigma=0.2xDelta_{MUSE} is added in quadrature to the line fitting errors, where Delta_{MUSE} = 1.1AA sim 50 km/s denotes the instrumental resolution of the MUSE spectra. Although the subtraction of the stellar continuum is critical in order to recover line fluxes, any method (including none) can be used in order to measure the gas kinematics, as long as an additional component of 0.2 x Delta_MUSE is added to the error budget.

قيم البحث

اقرأ أيضاً

221 - X. Mazzalay 2013
We present an analysis of the H2 emission-line gas kinematics in the inner < 4 arcsec radius of six nearby spiral galaxies, based on AO-assisted integral-field observations obtained in the K-band with SINFONI/VLT. Four of the six galaxies in our samp le display ordered H2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC3351); (2) oval motion in the galaxy plane (NGC3627 and NGC4536); (3) streaming motion superimposed on circular rotation (NGC4501); and (4) disordered streaming motions (NGC4569 and NGC4579). The H2 velocity dispersion in the galaxies is usually higher than 50 km/s in the inner 1-2 arcsec radii. The four galaxies with ordered kinematics have v/sigma < 1 at radii less than 40-80 pc. The radius at which v/sigma = 1 is independent of the type of nuclear activity. While the low values of v/sigma could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC3351 and NGC4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics.
We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is i deal to simultaneously target multiple galaxies in blank and cluster fields over the full optical spectrum. We analysed the four hours of data obtained in the Science Verification phase on this cluster and measured redshifts for 53 galaxies. We confirm the redshift of five cluster galaxies, and determine the redshift of 29 other cluster members. Behind the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-alpha emitters at z>3, and five multiply-lensed galaxies. We report the detection of a new z=4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier Fields. We detect C III], C IV, and He II emission in a multiply lensed galaxy at z=3.116, suggesting the likely presence of an active galactic nucleus. We also created narrow-band images from the MUSE datacube to automatically search for additional line emitters corresponding to high-redshift candidates, but we could not identify any significant detections other than those found by visual inspection. With the new redshifts, it will become possible to obtain an accurate mass reconstruction in the core of Abell S1063 through refined strong lensing modelling. Overall, our results illustrate the breadth of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies.
IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to c onnect its complex array of observed properties and build a more complete picture of its evolution. Using the Multi-Unit Spectroscopic Explorer (MUSE), the optical integral field unit (IFU) on the Very Large Telescope (VLT), we examine the gas and stellar properties of IC 1459 to decipher the origin and powering mechanism of the galaxys ionized gas. We detect ionized gas in a non-disk-like structure rotating in the opposite sense to the central stars. Using emission-line flux ratios and velocity dispersion from full-spectral fitting, we find two kinematically distinct regions of shocked emission-line gas in IC 1459, which we distinguished using narrow ($sigma$ $leq$ 155 km s$^{-1}$) and broad ($sigma$ $>$ 155 km s$^{-1}$) profiles. Our results imply that the emission-line gas in IC 1459 has a different origin than that of its counter-rotating stellar component. We propose that the ionized gas is from late-stage accretion of gas from the group environment, which occurred long after the formation of the central stellar component. We find that shock heating and AGN activity are both ionizing mechanisms in IC 1459 but that the dominant excitation mechanism is by post-asymptotic giant branch stars from its old stellar population.
Feedback likely plays a vital role in the formation of dwarf galaxies. While stellar processes have long been considered the main source of feedback, recent studies have revealed tantalizing signs of AGN feedback in dwarf galaxies. In this paper, we report the results from an integral-field spectroscopic study of a sample of eight dwarf galaxies with known AGN and suspected outflows. Outflows are detected in seven of them. The outflows are fast, with 50-percentile (median) velocity of up to $sim$240 km s$^{-1}$ and 80-percentile line width reaching $sim$1200 km s$^{-1}$, in clear contrast with the more quiescent kinematics of the host gas and stellar components. The outflows are generally spatially extended on a scale of several hundred pc to a few kpc, although our data do not clearly resolve the outflows in three targets. The outflows appear to be primarily photoionized by the AGN rather than shocks or young, massive stars. The kinematics and energetics of these outflows suggest that they are primarily driven by the AGN, although the star formation activity in these objects may also contribute to the energy input. A small but non-negligible portion of the outflowing material likely escapes the main body of the host galaxy and contributes to the enrichment of the circumgalactic medium. Overall, the impact of these outflows on their host galaxies is similar to those taking place in the more luminous AGN in the low-redshift universe.
Observations of galaxy isophotes, longs-slit kinematics and high-resolution photometry suggested a possible dichotomy between two distinct classes of E galaxies. But these methods are expensive for large galaxy samples. Instead, integral-field spectr oscopic can efficiently recognize the shape, dynamics and stellar population of complete samples of early-type galaxies (ETGs). These studies showed that the two main classes, the fast and slow rotators, can be separated using stellar kinematics. We showed there is a dichotomy in the dynamics of the two classes. The slow rotators are weakly triaxial and dominate above $M_{rm crit}approx2times10^{11} M_odot$. Below $M_{rm crit}$, the structure of fast rotators parallels that of spiral galaxies. There is a smooth sequence along which, the metals content, the enhancement in $alpha$-elements, and the weight of the stellar initial mass function, all increase with the CENTRAL mass density slope, or bulge mass fraction, while the molecular gas fraction correspondingly decreases. The properties of ETGs on galaxy scaling relations, and in particular the $(M_{ast}, R_{rm e})$ diagram, and their dependence on environment, indicate two main independent channels for galaxy evolution. Fast rotators ETGs start as star forming disks and evolve trough a channel dominated by gas accretion, bulge growth and quenching. While slow rotators assemble near the center of massive halos via intense star formation at high redshift, and remain as such for the rest of their evolution via a channel dominated by gas poor mergers. This is consistent with independent studies of the galaxies redshift evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا