ترغب بنشر مسار تعليمي؟ اضغط هنا

The Early Evolution of Stars and Exoplanet Systems: Exploring and Exploiting Nearby, Young Stars (an Astro2020 Science White Paper)

108   0   0.0 ( 0 )
 نشر من قبل Joel Kastner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our knowledge of the population of young (age <=750 Myr) stars that lie within ~120 pc of the Sun is rapidly accelerating. The vast majority of these nearby, young stars can be placed in kinematically coherent groups (nearby, young moving groups; NYMGs). NYMGs and their member stars afford unmatched opportunities to explore a wide variety of aspects of the early evolution of stars and exoplanet systems, including stellar initial mass functions and age determination methods; the magnetic activities and high-energy radiation environments of young, late-type stars; the dynamics of young binary and hierarchical multiple systems; the late evolutionary stages of circumstellar disks; and, especially, direct-imaging discovery and characterization of massive young exoplanets. In this Astro2020 Science White Paper, we describe how our understanding of these and many other aspects of the early lives of stars and planetary systems is ripe for progress over the next decade via the identification and study of NYMG members with present and next-generation facilities and instruments.

قيم البحث

اقرأ أيضاً

77 - E. De Beck , , M. L. Boyer 2019
Models of the chemical evolution of the interstellar medium, galaxies, and the Universe rely on our understanding of the amounts and chemical composition of the material returned by stars and supernovae. Stellar yields are obtained from stellar-evolu tion models, which currently lack predictive prescriptions of stellar mass loss, although it significantly affects stellar lifetimes, nucleosynthesis, and chemical ejecta. Galaxy properties are derived from observations of the integrated light of bright member stars. Stars in the late stages of their evolution are among the infrared-brightest objects in galaxies. An unrealistic treatment of the mass-loss process introduces significant uncertainties in galaxy properties derived from their integrated light. We describe current efforts and future needs and opportunities to characterize AGB outflows: driving mechanisms, outflow rates, underlying fundamental physical and chemical processes such as dust grain formation, and dependency of these on metallicity.
85 - Adam Burgasser 2019
High resolution spectroscopy of the lowest-mass stars and brown dwarfs reveals their origins, multiplicity, compositions and physical properties, with implications for the star formation and chemical evolution history of the Milky Way. We motivate th e need for high-resolution, infrared spectroscopic surveys to reach these faint sources.
The evolution of a star is driven by the physical processes in its interior making the theory of stellar structure and evolution the most crucial ingredient for not only stellar evolution studies, but any field of astronomy which relies on the yields along stellar evolution. High-precision time-series photometric data assembled by recent space missions revealed that current models of stellar structure and evolution show major shortcomings already in the two earliest nuclear burning phases, impacting all subsequent phases prior to the formation of the end-of-life remnant. This white paper focuses specifically on the transport of chemical elements and of angular momentum in the stellar structure and evolution models of stars born with convective core, as revealed by their gravity-mode oscillations.
94 - John J. Tobin 2019
Significant advances have been made over the past decade in the characterization of multiple protostar systems, enabled by the Karl G. Jansky Very Large Array (VLA), high-resolution infrared observations with the Hubble Space Telescope, and ground-ba sed facilities. To further understand the mechanism(s) of multiple star formation, a combination of statistics, high-angular resolution radio/millimeter continuum imaging, characterization of kinematic structure, magnetic fields via polarimetry, and comparison with numerical simulations are needed. Thus, understanding the origin of stellar multiplicity in different regimes of companion separation will soon be within reach. However, to overcome challenges that studies in this field are now confronted with, a range of new capabilities are required: a new millimeter/centimeter wave facility with 10 mas resolution at {lambda}=1 cm, space-based near to far-infrared observatories, continued development of low to high resolution spectroscopy on 3m to 10m class telescopes, and an ELT-class telescope with near to mid-infrared imaging/spectroscopic capability.
Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of low frequency gravitational wave radiation, which makes them ideal calibrators for the gravitational low-frequency wave detector LISA mission. However, current theoretical evolution models still fail to explain the observed properties of the known populations of white dwarfs in both interacting and detached binaries. Major limitations are that the existing population models have generally been developed to explain the properties of sub-samples of these systems, occupying small volumes of the vast parameter space, and that the observed samples are severely biased. The overarching goal for the next decade is to assemble a large and homogeneous sample of white dwarf binaries that spans the entire range of evolutionary states, to obtain precise measurements of their physical properties, and to further develop the theory to satisfactorily reproduce the properties of the entire population. While ongoing and future all-sky high- and low-resolution optical spectroscopic surveys allow us to enlarge the sample of these systems, high-resolution ultraviolet spectroscopy is absolutely essential for the characterization of the white dwarfs in these binaries. The Hubble Space Telescope is currently the only facility that provides ultraviolet spectroscopy, and with its foreseeable demise, planning the next ultraviolet mission is of utmost urgency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا