ﻻ يوجد ملخص باللغة العربية
With the rapid developments in quantum hardware comes a push towards the first practical applications on these devices. While fully fault-tolerant quantum computers may still be years away, one may ask if there exist intermediate forms of error correction or mitigation that might enable practical applications before then. In this work, we consider the idea of post-processing error decoders using existing quantum codes, which are capable of mitigating errors on encoded logical qubits using classical post-processing with no complicated syndrome measurements or additional qubits beyond those used for the logical qubits. This greatly simplifies the experimental exploration of quantum codes on near-term devices, removing the need for locality of syndromes or fast feed-forward, allowing one to study performance aspects of codes on real devices. We provide a general construction equipped with a simple stochastic sampling scheme that does not depend explicitly on a number of terms that we extend to approximate projectors within a subspace. This theory then allows one to generalize to the correction of some logical errors in the code space, correction of some physical unencoded Hamiltonians without engineered symmetries, and corrections derived from approximate symmetries. In this work, we develop the theory of the method and demonstrate it on a simple example with the perfect $[[5,1,3]]$ code, which exhibits a pseudo-threshold of $p approx 0.50$ under a single qubit depolarizing channel applied to all qubits. We also provide a demonstration under the application of a logical operation and performance on an unencoded hydrogen molecule, which exhibits a significant improvement over the entire range of possible errors incurred under a depolarizing channel.
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion [Phys. Rev. X 10, 011004 (2020)] can achieve full basis accuracy for hy
Rudolph (1967) introduced one-step majority logic decoding for linear codes derived from combinatorial designs. The decoder is easily realizable in hardware and requires that the dual code has to contain the blocks of so called geometric designs as c
We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error co
We propose a scheme to implement quantum computation in decoherence-free subspace with superconducting devices inside a cavity by unconventional geometric manipulation. Universal single-qubit gates in encoded qubit can be achieved with cavity assiste
Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace inte