ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum synchronization in a collision model

51   0   0.0 ( 0 )
 نشر من قبل G\\\"oktu\\u{g} Karpat
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reveal the emergence of environment-induced spontaneous synchronization between two spin-1/2 quantum objects in a collision model setting. In particular, we determine the conditions for the dynamical establishment of synchronous evolution between local spin observables of a pair of spins undergoing open-system dynamics in the absence of an external drive. Exploiting the versatility of the collision model framework, we show that the formation of quantum or classical correlations between the principal spin pair are of no significant relevance to the manifestation of spontaneous quantum synchronization between them. Furthermore, we discuss the consequences of thermal effects on the environmental spins for the emergence of quantum synchronization.

قيم البحث

اقرأ أيضاً

We show the emergence of spontaneous synchronization between a pair of detuned quantum oscillators within a harmonic network. Our model does not involve any nonlinearity, driving, or external dissipation, thus providing the simplest scenario for the occurrence of local coherent dynamics in an extended harmonic system. A sufficient condition for synchronization is established by building upon the Rayleigh normal mode approach to vibrational systems. Our results show that mechanisms favoring synchronization, even between oscillators that are not directly coupled to each other, are transient energy depletion and crosstalk. We also address the possible buildup of quantum correlations during synchronization and show that indeed entanglement may be generated in detuned systems, starting from uncorrelated states and without any direct coupling between the two oscillators.
54 - Yan Li , Xingli Li , 2020
The information scrambling in many-body systems is closely related to quantum chaotic dynamics, complexity, and gravity. Here we propose a collision model to simulate the information dynamics in an all-optical system. In our model the information is initially localized in the memory and evolves under the combined actions of many-body interactions and dissipation. We find that the information is scrambled if the memory and environmental particles are alternatively squeezed along two directions which are perpendicular to each other. Moreover, the disorder and imperfection of the interaction strength tend to prevent the information flow away to the environment and lead to the information scrambling in the memory. We analyze the spatial distributions of the correlations in the memory. Our proposal is possible to realize with current experimental techniques.
Noise-assisted transport phenomena highlight the nontrivial interplay between environmental effects and quantum coherence in achieving maximal efficiency. Due to the complexity of biochemical systems and their environments, effective open quantum sys tem models capable of providing physical insights on the presence and role of quantum effects are highly needed. In this paper, we introduce a new approach that combines an effective quantum microscopic description with a classical stochastic one. Our stochastic collision model describes both Markovian and non-Markovian dynamics without relying on the weak coupling assumption. We investigate the consequences of spatial and temporal heterogeneity of noise on transport efficiency in a fully connected graph and in the Fenna-Matthews-Olson complex. Our approach shows how to meaningfully formulate questions, and provide answers, on important open issues such as the properties of optimal noise and the emergence of the network structure as a result of an evolutionary process.
We present a theoretical framework to tackle quantum non-Markovian dynamics based on a microscopic collision model (CM), where the bath consists of a large collection of initially uncorrelated ancillas. Unlike standard memoryless CMs, we endow the ba th with memory by introducing inter-ancillary collisions between next system-ancilla interactions. Our model interpolates between a fully Markovian dynamics and the continuous interaction of the system with a single ancilla, i.e., a strongly non-Markovian process. We show that in the continuos limit one can derive a general master equation, which while keeping such features is guaranteed to describe an unconditionally completely positive and trace-preserving dynamics. We apply our theory to an atom in a dissipative cavity for a Lorentzian spectral density of bath modes, a dynamics which can be exactly solved. The predicted evolution shows a significant improvement in approaching the exact solution with respect to two well-known memory-kernel master equations.
We present QuantumSync, the first quantum algorithm for solving a synchronization problem in the context of computer vision. In particular, we focus on permutation synchronization which involves solving a non-convex optimization problem in discrete v ariables. We start by formulating synchronization into a quadratic unconstrained binary optimization problem (QUBO). While such formulation respects the binary nature of the problem, ensuring that the result is a set of permutations requires extra care. Hence, we: (i) show how to insert permutation constraints into a QUBO problem and (ii) solve the constrained QUBO problem on the current generation of the adiabatic quantum computers D-Wave. Thanks to the quantum annealing, we guarantee global optimality with high probability while sampling the energy landscape to yield confidence estimates. Our proof-of-concepts realization on the adiabatic D-Wave computer demonstrates that quantum machines offer a promising way to solve the prevalent yet difficult synchronization problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا