ﻻ يوجد ملخص باللغة العربية
Accurate segmenting nuclei instances is a crucial step in computer-aided image analysis to extract rich features for cellular estimation and following diagnosis as well as treatment. While it still remains challenging because the wide existence of nuclei clusters, along with the large morphological variances among different organs make nuclei instance segmentation susceptible to over-/under-segmentation. Additionally, the inevitably subjective annotating and mislabeling prevent the network learning from reliable samples and eventually reduce the generalization capability for robustly segmenting unseen organ nuclei. To address these issues, we propose a novel deep neural network, namely Contour-aware Informative Aggregation Network (CIA-Net) with multi-level information aggregation module between two task-specific decoders. Rather than independent decoders, it leverages the merit of spatial and texture dependencies between nuclei and contour by bi-directionally aggregating task-specific features. Furthermore, we proposed a novel smooth truncated loss that modulates losses to reduce the perturbation from outliers. Consequently, the network can focus on learning from reliable and informative samples, which inherently improves the generalization capability. Experiments on the 2018 MICCAI challenge of Multi-Organ-Nuclei-Segmentation validated the effectiveness of our proposed method, surpassing all the other 35 competitive teams by a significant margin.
Instance segmentation on point clouds is a fundamental task in 3D scene perception. In this work, we propose a concise clustering-based framework named HAIS, which makes full use of spatial relation of points and point sets. Considering clustering-ba
Most of the modern instance segmentation approaches fall into two categories: region-based approaches in which object bounding boxes are detected first and later used in cropping and segmenting instances; and keypoint-based approaches in which indivi
Direct contour regression for instance segmentation is a challenging task. Previous works usually achieve it by learning to progressively refine the contour prediction or adopting a shape representation with limited expressiveness. In this work, we a
Multi-instance video object segmentation is to segment specific instances throughout a video sequence in pixel level, given only an annotated first frame. In this paper, we implement an effective fully convolutional networks with U-Net similar struct
Deep learning-based methods are gaining traction in digital pathology, with an increasing number of publications and challenges that aim at easing the work of systematically and exhaustively analyzing tissue slides. These methods often achieve very h