ترغب بنشر مسار تعليمي؟ اضغط هنا

On a class of quasilinear elliptic equation with indefinite weights on graphs

73   0   0.0 ( 0 )
 نشر من قبل Shoudong Man
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Suppose that $G=(V, E)$ is a connected locally finite graph with the vertex set $V$ and the edge set $E$. Let $Omegasubset V$ be a bounded domain. Consider the following quasilinear elliptic equation on graph $G$ $$ left { begin{array}{lcr} -Delta_{p}u= lambda K(x)|u|^{p-2}u+f(x,u), xinOmega^{circ}, u=0, xinpartial Omega, end{array} right. $$ where $Omega^{circ}$ and $partial Omega$ denote the interior and the boundary of $Omega$ respectively, $Delta_{p}$ is the discrete $p$-Laplacian, $K(x)$ is a given function which may change sign, $lambda$ is the eigenvalue parameter and $f(x,u)$ has exponential growth. We prove the existence and monotonicity of the principal eigenvalue of the corresponding eigenvalue problem. Furthermore, we also obtain the existence of a positive solution by using variational methods.



قيم البحث

اقرأ أيضاً

We show, by modifying Borbelys example, that there are $3$-dimen-sional Cartan-Hadamard manifolds $M$, with sectional curvatures $le -1$, such that the asymptotic Dirichlet problem for a class of quasilinear elliptic PDEs, including the minimal graph equation, is not solvable.
We consider planar solutions to certain quasilinear elliptic equations subject to the Dirichlet boundary conditions; the boundary data is assumed to have finite number of relative maximum and minimum values. We are interested in certain vanishing pro perties of sign changing solutions to such a Dirichlet problem. Our method is applicable in the plane.
186 - Jon Wolfson 2012
Adapting the method of Andrews-Clutterbuck we prove an eigenvalue gap theorem for a class of non symmetric second order linear elliptic operators on a convex domain in euclidean space. The class of operators includes the Bakry-Emery laplacian with po tential and any operator with second order term the laplacian whose first order terms have coefficients with compact support in the open domain. The eigenvalue gap is bounded below by the gap of an associated Sturm-Liouville problem on a closed interval.
136 - Fengwen Han , Bobo Hua 2020
We study the wave equation on infinite graphs. On one hand, in contrast to the wave equation on manifolds, we construct an example for the non-uniqueness for the Cauchy problem of the wave equation on graphs. On the other hand, we obtain a sharp uniq ueness class for the solutions of the wave equation. The result follows from the time analyticity of the solutions to the wave equation in the uniqueness class.
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invari ant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension $geq 8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا