ﻻ يوجد ملخص باللغة العربية
We report on high-pressure (p_max = 2.1 GPa) muon spin rotation experiments probing the temperature-dependent magnetic penetration depth in the layered superconductor 2H-NbSe_2. Upon increasing the pressure, we observe a substantial increase of the superfluid density n_s, which we find to scale linearly with T_c. This linear scaling is considered a hallmark feature of unconventional superconductivity, especially in high-temperature cuprate superconductors. Our current results, along with our earlier findings on 1T-MoTe_2 (Z. Guguchia et. al., Nature Communications 8, 1082 (2017)), demonstrate that this linear relation is also an intrinsic property of the superconductivity in transition metal dichalcogenides, whereas the ratio T_c/T_F is approximately a factor of 20 lower than the ratio observed in hole-doped cuprates. We, furthermore, find that the values of the superconducting gaps are insensitive to the suppression of the quasi-two-dimensional CDW state, indicating that the CDW ordering and the superconductivity in 2H-NbSe_2 are independent of each other.
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We calculate the superfluid density tensor in the clean l
The superfluid density near the superconducting transition is investigated in the presence of spatial inhomogeneity in the critical temperature. Disorder is accounted for by means of a random $T_c$ term in the conventional Ginzburg-Landau action for
Many of the electronic properties of high-temperature cuprate superconductors (HTSC) are strongly dependent on the number of charge carriers put into the CuO$_2$ planes (doping). Superconductivity appears over a dome-shaped region of the doping-tempe
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, $T_{CDW}$. However, it is often difficult to use conventional methods to
A universal scaling relation, $rho_s propto sigma(T_c)times T_c$ has been reported by Homes $et$ $al$. (Nature (London) {bf 430}, 539 (2004)) where $rho_s$ is the superfluid density and $sigma(T)$ is the DC conductivity. The relation was shown to app