ﻻ يوجد ملخص باللغة العربية
The magnetic and dielectric properties of the multiferroic triangular lattice magnet compound alpha-NaFeO2 were studied by magnetization, specific heat, dielectric permittivity, and pyroelectric current measurements and by neutron diffraction experiments using single crystals grown by a hydrothermal synthesis method. This work produced magnetic field (in the monoclinic ab-plane, B_ab, and along the c*-axis, B_c) versus temperature magnetic phase diagrams, including five and six magnetically ordered phases in B_ab and along B_c, respectively. Comparing the polarization direction to the magnetic structures in the different ferroelectric phases, we conclude that the extended inverse Dzyaloshinskii-Moriya mechanism expressed by the orthogonal components p1 ~ rij x (Si x Sj ) and p2 ~ Si x Sj can explain the polarization directions. Based on calculations incorporating exchange interactions up to fourth-nearest-neighbor (NN) couplings, we infer that competition among antiferromagnetic second NN interactions in the triangular lattice plane, as well as weak interplane antiferromagnetic interactions, are responsible for the rich phase diagrams of alpha-NaFeO2.
Electric and magnetic properties of multiferroic GdMn2O5 in external magnetic fields were investigated to map out the magnetoelectric phases in this material. Due to strong magnetoelectric coupling, the dielectric permittivity is highly sensitive to
Magnetic phase transitions in multiferroic bismuth ferrite (BiFeO3) induced by magnetic field, epitaxial strain, and composition modification are considered. These transitions from a spatially modulated spin spiral state to a homogenous antiferromagn
A theoretical description of the sequence of magnetic phases in Co3TeO6 is presented. The strongly first-order character of the transition to the commensurate multiferroic ground state, induced by coupled order parameters corresponding to different w
The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fi
We have discovered strong magnetoelectric (ME) effects in the single chiral-helical magnetic state of single-crystalline langasite Ba3NbFe3Si2O14 that is crystallographically chiral. The ferroelectric polarization, predominantly aligned along the a a