ﻻ يوجد ملخص باللغة العربية
Extending for over 200 degrees across the sky, the Magellanic Stream together with its Leading Arm is the most spectacular example of a gaseous stream in the local Universe. The Stream is an interwoven tail of filaments trailing the Magellanic Clouds as they orbit the Milky Way. Thought to be created by tidal forces, ram pressure, and halo interactions, the Stream is a benchmark for dynamical models of the Magellanic System, a case study for gas accretion and dwarf-galaxy accretion onto galaxies, a probe of the outer halo, and the bearer of more gas mass than all other Galactic high velocity clouds combined. If it survives to reach the Galactic disk, it may maintain or even elevate the Galactic star-formation rate. In this white paper, we emphasize the Streams importance for many areas of Galactic astronomy, summarize key unanswered questions, and identify future observations and simulations needed to resolve them. We stress the importance of ultraviolet, optical, and radio spectroscopy, and the need for computational models that capture full particle and radiation treatments within an MHD environment.
The dominant gaseous structure in the Galactic halo is the Magellanic Stream, an extended network of neutral and ionized filaments surrounding the Large and Small Magellanic Clouds (LMC/SMC), the two most massive satellite galaxies of the Milky Way.
We present a model for the formation of the Magellanic Stream (MS) due to ram pressure stripping. We model the history of the Small and Large Magellanic Clouds in the recent cosmological past in a static Milky Way potential with diffuse halo gas, usi
The Magellanic Clouds are surrounded by an extended network of gaseous structures. Chief among these is the Magellanic Stream, an interwoven tail of filaments trailing the Clouds in their orbit around the Milky Way. When considered in tandem with its
We present a study of the discrete clouds and filaments in the Magellanic Stream using a new high-resolution survey of neutral hydrogen (HI) conducted with H75 array of the Australia Telescope Compact Array, complemented by single-dish data from the
Recent high precision proper motions from the Hubble Space Telescope (HST) suggest that the Large and Small Magellanic Clouds (LMC and SMC, respectively) are either on their first passage or on an eccentric long period (>6 Gyr) orbit about the Milky