ﻻ يوجد ملخص باللغة العربية
As of today, we have directly detected exactly one source in both gravitational waves (GWs) and electromagnetic (EM) radiation, the binary neutron star merger GW170817, its associated gamma-ray burst GRB170817A, and the subsequent kilonova SSS17a/AT 2017gfo. Within ten years, we will detect hundreds of events, including new classes of events such as neutron-star-black-hole mergers, core-collapse supernovae, and almost certainly something completely unexpected. As we build this sample, we will explore exotic astrophysical topics ranging from nucleosynthesis, stellar evolution, general relativity, high-energy astrophysics, nuclear matter, to cosmology. The discovery potential is extraordinary, and investments in this area will yield major scientific breakthroughs. Here we outline some of the most exciting scientific questions that can be answered by combining GW and EM observations.
We discuss two approaches to searches for gravitational-wave (GW) and electromagnetic (EM) counterparts of binary neutron star mergers. The first approach relies on triggering archival searches of GW detector data based on detections of EM transients
The blossoming field of joint gravitational wave and electromagnetic (GW-EM) astronomy is one of the most promising in astronomy. The first, and only, joint GW-EM event GW170817 provided remarkable science returns that still continue to this day. Con
Gravitational wave transients, resulting from the merger of two stellar remnants, are now detectable. The properties and rates of these directly relates to the stellar population which gave rise to their progenitors, and thus to other, electromagneti
The recent detection of gravitational waves (GWs) and electromagnetic (EM) waves originating from the same source marks the start of a new multi-messenger era in astronomy. The arrival time difference between the GW and EM signal can be used to const
We discuss a modified gravity model which fits cosmological observations at a level statistically indistinguishable from $Lambda$CDM and at the same time predicts very large deviations from General Relativity (GR) in the propagation of gravitational