ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing the Origins and Evolution of Small Planets using Their Orbital Obliquities

56   0   0.0 ( 0 )
 نشر من قبل Marshall Johnson
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We recommend an intensive effort to survey and understand the obliquity distribution of small close-in extrasolar planets over the coming decade. The orbital obliquities of exoplanets--i.e., the relative orientation between the planetary orbit and the stellar rotation--is a key tracer of how planets form and migrate. While the orbital obliquities of smaller planets are poorly explored today, a new generation of facilities coming online over the next decade will make such observations possible en masse. Transit spectroscopic observations with the extremely large telescopes will enable us to measure the orbital obliquities of planets as small as $sim2R_{oplus}$ around a wide variety of stars, opening a window into the orbital properties of the most common types of planets. This effort will directly contribute to understanding the formation and evolution of planetary systems, a key objective of the National Academy of Sciences Exoplanet Science Strategies report.



قيم البحث

اقرأ أيضاً

Centaurs are solar system objects with orbits situated among the orbits of Jupiter and Neptune. Centaurs represent one of the sources of Near-Earth Objects. Thus, it is crucial to understand their orbital evolution which in some cases might end in co llision with terrestrial planets and produce catastrophic events. We study the orbital evolution of the Centaurs toward the inner solar system, and estimate the number of close encounters and impacts with the terrestrial planets after the Late Heavy Bombardment assuming a steady state population of Centaurs. We also estimate the possible crater sizes. We compute the approximate amount of water released: on the Earth, which is about 0.00001 the total water present now. We also found sub-regions of the Centaurs where the possible impactors originate from. While crater sizes could extend up to hundreds of kilometers in diameter given the presently known population of Centaurs the majority of the craters would be less than about 10 km. For all the planets and an average impactor size of 12 km in diameter, the average impact frequency since the Late Heavy Bombardment is one every 1.9 Gyr for the Earth and 2.1 Gyr for Venus. For smaller bodies (e.g. > 1 km), the impact frequency is one every 14.4 Myr for the Earth, 13.1 Myr for Venus and, 46.3 for Mars, in the recent solar system. Only 53% of the Centaurs can enter into the terrestrial planet region and 7% can interact with terrestrial planets.
It has been known for a decade that hot stars with hot Jupiters tend to have high obliquities. Less is known about the degree of spin-orbit alignment for hot stars with other kinds of planets. Here, we re-assess the obliquities of hot Kepler stars wi th transiting planets smaller than Neptune, based on spectroscopic measurements of their projected rotation velocities (vsini). The basis of the method is that a lower obliquity -- all other things being equal -- causes sini to be closer to unity and increases the value of vsini. We sought evidence for this effect using a sample of 150 Kepler stars with effective temperatures between 5950 and 6550K and a control sample of 101 stars with matching spectroscopic properties and random orientations. The planet hosts have systematically higher values of vsini than the control stars, but not by enough to be compatible with perfect spin-orbit alignment. The mean value of sini is 0.856 +/- 0.036, which is 4-sigma away from unity (perfect alignment), and 2-sigma away from pi/4 (random orientations). There is also evidence that the hottest stars have a broader obliquity distribution: when modeled separately, the stars cooler than 6250K have <sini> = 0.928 +/- 0.042, while the hotter stars are consistent with random orientations. This is similar to the pattern previously noted for stars with hot Jupiters. Based on these results, obliquity excitation for early-G and late-F stars appears to be a general outcome of star and planet formation, rather than being exclusively linked to hot Jupiter formation.
We simulate the coupled stellar and tidal evolution of short-period binary stars (orbital period $P_{orb} lsim$8 days) to investigate the orbital oscillations, instellation cycles, and orbital stability of circumbinary planets (CBPs). We consider two tidal models and show that both predict an outward-then-inward evolution of the binarys semi-major axis $a_{bin}$ and eccentricity $e_{bin}$. This orbital evolution drives a similar evolution of the minimum CBP semi-major axis for orbital stability. By expanding on previous models to include the evolution of the mass concentration, we show that the maximum in the CBP orbital stability limit tends to occur 100 Myr after the planets form, a factor of 100 longer than previous investigations. This result provides further support for the hypothesis that the early stellar-tidal evolution of binary stars has removed CBPs from short-period binaries. We then apply the models to Kepler-47 b, a CBP orbiting close to its host stars stability limit, to show that if the binarys initial $e_{bin} gsim$0.24, the planet would have been orbiting within the instability zone in the past and probably wouldnt have survived. For stable, hypothetical cases in which the stability limit does not reach a planets orbit, we find that the amplitudes of $a_{bin}$ and $e_{bin}$ oscillations can damp by up to 10% and 50%, respectively. Finally, we consider equal-mass stars with $P_{orb} =$ 7.5 days and compare the HZ to the stability limit. We find that for stellar masses $lsim0.12M_{odot}$, the HZ is completely unstable, even if the binary orbit is circular. For $e_{bin} lsim$0.5, that limit increases to $0.17M_{odot}$, and the HZ is partially destabilized for stellar masses up to $0.45M_{odot}$. These results may help guide searches for potentially habitable CBPs, as well as characterize their evolution and likelihood to support life after they are found.
578 - S. Marchi 2009
The extrasolar planets (EPs) so far detected are very different to the planets in our own Solar System. Many of them have Jupiter-like masses and close-in orbits (the so-called hot planets, HPs), with orbital periods of only a few days. In this paper , we present a new statistical analysis of the observed EPs, focusing on the origin of the HPs. Among the several HP formation mechanisms proposed so far, the two main formation mechanisms are type II migration and scattering. In both cases, planets form beyond the so-called snow-line of the protoplanetary disk and then migrate inward due to angular momentum and energy exchange with either the protoplanetary disk or with companion planets. Although theoretical studies produce a range of observed features, no firm correspondence between the observed EPs and models has yet been established. In our analysis, by means of principal component analysis and hierarchical cluster analysis, we find convincing indications for the existence of two types of HPs, whose parameters reflect physical mechanisms of type II migration and scattering.
We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000K, including 6 4 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 Earth radius planets with orbital periods shorter than 50 days is 0.90 (+0.04/-0.03) planets per star. The occurrence rate of Earth-size (0.5-1.4 Earth radius) planets is constant across the temperature range of our sample at 0.51 (+0.06/-0.05) Earth-size planets per star, but the occurrence of 1.4-4 Earth radius planets decreases significantly at cooler temperatures. Our sample includes 2 Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15 (+0.13/-0.06) planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا