ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1

106   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with zero. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be $m_g leq 4.7 times 10^{-23} text{eV}/c^2$ ($90%$ credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously.

قيم البحث

اقرأ أيضاً

We have examined gravitational wave echo signals for nine binary black hole merger events observed by Advanced LIGO and Virgo during the first and second observation runs. To construct an echo template, we consider Kerr spacetime, where the event hor izon is replaced by a reflective membrane. We use frequency-dependent reflection rate at the angular potential barrier, which is fitted to the numerical data obtained by solving Teukolsky equations. This reflection rate gives a frequency-dependent transmission rate that is suppressed at lower frequencies in the template. We also take into account the overall phase shift of the waveform as a parameter, which arises when the wave is reflected at the membrane and potential barrier. Using this template based on black hole perturbation, we find no significant echo signals in the binary black hole merger events.
Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first estab lish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of ${sim}2$; we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of ${sim}2.6$ and bound the mass of the graviton to $m_g leq 1.76 times 10^{-23} mathrm{eV}/c^2$ with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to $delta hat{f}_{220} = 0.03^{+0.38}_{-0.35}$ for the fundamental quadrupolar mode, and $delta hat{f}_{221} = 0.04^{+0.27}_{-0.32}$ for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.
Using exclusively the 777 full numerical waveforms of the third Binary Black Holes RIT catalog, we reanalyze the ten black hole merger signals reported in LIGO/Virgos O1/O2 observation runs. We obtain binary parameters, extrinsic parameters, and the remnant properties of these gravitational waves events which are consistent with, but not identical to previously presented results. We have also analyzed three additional events (GW170121, GW170304, GW170727) reported in Venumadhav et al. 2019, and found closely matching parameters. We finally assess the accuracy of our waveforms with convergence studies applied to O1/O2 events and found them adequate for current estimation of parameters.
We consider the observation of stellar-mass black holes binaries with the Laser Interferometer Space Antenna (LISA). Preliminary results based on Fisher information matrix analyses have suggested that gravitational waves from those sources could be v ery sensitive to possible deviations from the theory of general relativity and from the strong equivalence principle during the low-frequency binary inspiral. We perform a full Markov Chain Monte Carlo Bayesian analysis to quantify the sensitivity of these signals to two phenomenological modifications of general relativity, namely a putative gravitational dipole emission and a non-zero mass for the graviton, properly accounting for the detectors response. Moreover, we consider a scenario where those sources could be observed also with Earth-based detectors, which should measure the coalescence time with precision better than $1 {rm ms}$. This constraint on the coalescence time further improves the bounds that we can set on those phenomenological deviations from general relativity. We show that tests of dipole radiation and the gravitons mass should improve respectively by seven and half an order(s) of magnitude over current bounds. Finally, we discuss under which conditions one may claim the detection of a modification to general relativity.
The second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, whi ch reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period, which is now publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5, using the default priors. Of these candidates, 36 have been reported in GWTC-2. If the 8 additional high-significance candidates presented here are astrophysical, the mass range of candidate events that are unambiguously identified as binary black holes (both objects $geq 3M_odot$) is increased compared to GWTC-2, with total masses from $sim 14M_odot$ for GW190924_021846 to $sim 184M_odot$ for GW190426_190642. The primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events ($q lt 0.61$ and $q lt 0.62$ at $90%$ credibility for GW190403_051519 and GW190917_114630 respectively), and find that 2 of the 8 new events have effective inspiral spins $chi_mathrm{eff} > 0$ (at $90%$ credibility), while no binary is consistent with $chi_mathrm{eff} lt 0$ at the same significance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا