ترغب بنشر مسار تعليمي؟ اضغط هنا

Opportunities for Multimessenger Astronomy in the 2020s

80   0   0.0 ( 0 )
 نشر من قبل Eric Burns
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electromagnetic observations of the sky have been the basis for our study of the Universe for millennia, cosmic ray studies are now entering their second century, the first neutrinos from an astrophysical source were identified three decades ago, and gravitational waves were directly detected only four years ago. Detections of these messengers are now common. Astrophysics will undergo a revolution in the 2020s as multimessenger detections become routine. The 8th Astro2020 Thematic Area is Multimessenger Astronomy and Astrophysics, which includes the identification of the sources of gravitational waves, astrophysical and cosmogenic neutrinos, cosmic rays, and gamma-rays, and the coordinated multimessenger and multiwavelength follow-ups. Identifying and characterizing multimessenger sources enables science throughout and beyond astrophysics. Success in the multimessenger era requires: (i) sensitive coverage of the non-electromagnetic messengers, (ii) full coverage of the electromagnetic spectrum, with either fast-response observations or broad and deep high-cadence surveys, and (iii) improved collaboration, communication, and notification platforms.

قيم البحث

اقرأ أيضاً

LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of a stronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.
e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to ene rgies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.
89 - S. Ando , B. Baret 2012
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GW) and high-energy neutrinos (HEN). Both GWs and HENs may escape very dense media and travel unaffected over cosmological distances, carrying information from the innermost regions of the astrophysical engines. Such messengers could also reveal new, hidden sources that have not been observed by conventional photon-based astronomy. Coincident observation of GWs and HENs may thus play a critical role in multimessenger astronomy. This is particularly true at the present time owing to the advent of a new generation of dedicated detectors: IceCube, ANTARES, VIRGO and LIGO. Given the complexity of the instruments, a successful joint analysis of this data set will be possible only if the expertise and knowledge of the data is shared between the two communities. This review aims at providing an overview of both theoretical and experimental state-of-the-art and perspectives for such a GW+HEN multimessenger astronomy.
All-Sky-ASTROGAM is a gamma-ray observatory operating in a broad energy range, 100 keV to a few hundred MeV, recently proposed as the Fast (F) mission of the European Space Agency for a launch in 2028 to an L2 orbit. The scientific payload is compose d of a unique gamma-ray imaging monitor for astrophysical transients, with very large field of view (almost 4$pi$ sr) and optimal sensitivity to detect bright and intermediate flux sources (gamma-ray bursts, active galactic nuclei, X-ray binaries, supernovae and novae) at different timescales ranging from seconds to months. The mission will operate in a maturing gravitational wave and multi-messenger epoch, opening up new and exciting synergies.
This whitepaper identifies important science questions that can be answered through exploration of the Jupiter System, with emphasis on the questions that can be addressed by the Europa Clipper Mission. We advocate for adding Jupiter System Science t o the mission after launch when expanding the scientific scope will not affect the development cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا