ترغب بنشر مسار تعليمي؟ اضغط هنا

A New, Deep JVLA Radio Survey of M33

226   0   0.0 ( 0 )
 نشر من قبل Richard L. White
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed new 1.4 GHz and 5 GHz observations of the Local Group galaxy M33 with the Jansky Very Large Array. Our survey has a limiting sensitivity of 20 uJy (4-sigma) and a resolution of 5.9 arcsec (FWHM), corresponding to a spatial resolution of 24 pc at 817 kpc. Using a new multi-resolution algorithm, we have created a catalog of 2875 sources, including 675 with well-determined spectral indices. We detect sources at the position of 319 of the X-ray sources in the Tuellmann et al. (2011) Chandra survey of M33, the majority of which are likely to be background galaxies. The radio source coincident with M33 X-8, the nuclear source, appears to be extended. Along with numerous H II regions or portions of H II region complexes, we detect 155 of the 217 optical supernova remnants included in the lists of Long et al. (2010) and Lee & Lee (2014), making this by far the largest sample of remnants at known distances with multiwavelength coverage. The remnants show a large dispersion in the ratio of radio to X-ray luminosity at a given diameter, a result that challenges the current generation of models for synchrotron radiation evolution in supernova remnants. See http://sundog.stsci.edu/m33 for access to catalogs and images.



قيم البحث

اقرأ أيضاً

112 - Noah Kurinsky 2012
We report multiple epoch VLA/JVLA observations of 89 northern hemisphere sources, most with 37,GHz flux density > 1 Jy, observed at 4.8, 8.5, 33.5, and 43.3 GHz. The high frequency selection leads to a predominantly flat spectrum sample, with 85% of our sources being in the Planck Early Release Compact Source Catalog (ERCSC). These observations allow us to: 1) validate Plancks 30 and 44 GHz flux density scale, 2) extend the radio SEDs of Planck sources to lower frequencies allowing for the full 5-857GHz regime to be studied, and 3) characterize the variability of these sources. At 30 GHz and 44 GHz, the JVLA and Planck flux densities agree to within 3%. On timescales of less than two months the median variability of our sources is 2%. On timescales of about a year the median variability increases to 14%. Using the WMAP 7-year data, the 30 GHz median variability on a 1-6 years timescale is 16%.
We present Clusterrank, a new algorithm for identifying dispersed astrophysical pulses. Such pulses are commonly detected from Galactic pulsars and rotating radio transients (RRATs), which are neutron stars with sporadic radio emission. More recently , isolated, highly dispersed pulses dubbed fast radio bursts (FRBs) have been identified as the potential signature of an extragalactic cataclysmic radio source distinct from pulsars and RRATs. Clusterrank helped us discover 14 pulsars and 8 RRATs in data from the Arecibo 327 MHz Drift Pulsar Survey (AO327). The new RRATs have DMs in the range $23.5 - 86.6$ pc cm$^{-3}$ and periods in the range $0.172 - 3.901$ s. The new pulsars have DMs in the range $23.6 - 133.3$ pc cm$^{-3}$ and periods in the range $1.249 - 5.012$ s, and include two nullers and a mode-switching object. We estimate an upper limit on the all-sky FRB rate of $10^5$ day$^{-1}$ for bursts with a width of 10 ms and flux density $gtrsim 83$ mJy. The DMs of all new discoveries are consistent with a Galactic origin. In comparing statistics of the new RRATs with sources from the RRATalog, we find that both sets are drawn from the same period distribution. In contrast, we find that the period distribution of the new pulsars is different from the period distributions of canonical pulsars in the ATNF catalog or pulsars found in AO327 data by a periodicity search. This indicates that Clusterrank is a powerful complement to periodicity searches and uncovers a subset of the pulsar population that has so far been underrepresented in survey results and therefore in Galactic pulsar population models.
The computational cost of searching for new pulsars is a limiting factor for upcoming radio telescopes such as SKA. We introduce four new algorithms: an optimal constant-period search, a coherent tree search which permits optimal searching with O(1) cost per model, a semicoherent search which combines information from coherent subsearches while preserving as much phase information as possible, and a hierarchical search which interpolates between the coherent and semicoherent limits. Taken together, these algorithms improve the computational cost of pulsar search by several orders of magnitude. In this paper, we consider the simple case of a constant-acceleration phase model, but our methods should generalize to more complex search spaces.
We have reprocessed a set of observations of 75 bright, unidentified, steep-spectrum polarized radio sources taken with the Green Bank 43-m telescope to find previously undetected sub-millisecond pulsars and radio bursts. The (null) results of the fi rst search of these data were reported by Schmidt et al. Our reprocessing searched for single pulses out to a dispersion measure (DM) of 1000 pc cm$^{-3}$ which were classified using the Deep Learning based classifier FETCH. We also searched for periodicities at a wider range of DMs and accelerations. Our search was sensitive to highly accelerated, rapidly rotating pulsars (including sub-millisecond pulsars) in compact binary systems as well as to highly-dispersed impulsive signals, such as fast radio bursts. No pulsars or astrophysical burst signals were found in the reprocessing.
We conducted a survey of seven magnetic O and eleven B-type stars with masses above $8M_{odot}$ using the Very Large Array in the 1cm, 3cm and 13cm bands. The survey resulted in a detection of two O and two B-type stars. While the detected O-type sta rs - HD 37742 and HD 47129 - are in binary systems, the detected B-type stars, HD 156424 and ALS 9522, are not known to be in binaries. All four stars were detected at 3cm, whereas three were detected at 1cm and only one star was detected at 13cm. The detected B-type stars are significantly more radio luminous than the non-detected ones, which is not the case for O-type stars. The non-detections at 13cm are interpreted as due to thermal free-free absorption. Mass-loss rates were estimated using 3cm flux densities and were compared with theoretical mass-loss rates, which assume free-free emission. For HD 37742, the two values of the mass-loss rates were in good agreement, possibly suggesting that the radio emission for this star is mainly thermal. For the other three stars, the estimated mass-loss rates from radio observations were much higher than those expected from theory, suggesting either a possible contribution from non- thermal emission from the magnetic star or thermal or non-thermal emission due to interacting winds of the binary system, especially for HD 47129. All the detected stars are predicted to host centrifugal magnetospheres except HD 37742, which is likely to host a dynamical magnetosphere. This suggests that non-thermal radio emission is favoured in stars with centrifugal magnetospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا