ﻻ يوجد ملخص باللغة العربية
A Gallai coloring is an edge coloring that avoids triangles colored with three different colors. Given integers $e_1ge e_2 ge dots ge e_k$ with $sum_{i=1}^ke_i={n choose 2}$ for some $n$, does there exist a Gallai $k$-coloring of $K_n$ with $e_i$ edges in color $i$? In this paper, we give several sufficient conditions and one necessary condition to guarantee a positive answer to the above question. In particular, we prove the existence of a Gallai-coloring if $e_1-e_kle 1$ and $k le lfloor n/2rfloor$. We prove that for any integer $kge 3$ there is a (unique) integer $g(k)$ with the following property: there exists a Gallai $k$-coloring of $K_n$ with $e_i$ edges in color $i$ for every $e_1ledots le e_k$ satisfying $sum_{i=1}^ke_i={nchoose 2}$, if and only if $nge g(k)$. We show that $g(3)=5$, $g(4)=8$, and $2k-2le g(k)le 8k^2+1$ for every $kge 3$.
We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+epsilon)k^2$, where $epsilonto 0$ as $kto infty$. This bound is essentially tight.
A Gallai-coloring (Gallai-$k$-coloring) is an edge-coloring (with colors from ${1, 2, ldots, k}$) of a complete graph without rainbow triangles. Given a graph $H$ and a positive integer $k$, the $k$-colored Gallai-Ramsey number $GR_k(H)$ is the minim
For fixed $p$ and $q$, an edge-coloring of the complete graph $K_n$ is said to be a $(p, q)$-coloring if every $K_p$ receives at least $q$ distinct colors. The function $f(n, p, q)$ is the minimum number of colors needed for $K_n$ to have a $(p, q)$-
An emph{interval $t$-coloring} of a multigraph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors. A emph{cyclic interval $t$-coloring} of a multigr
In this work we study arrangements of $k$-dimensional subspaces $V_1,ldots,V_n subset mathbb{C}^ell$. Our main result shows that, if every pair $V_{a},V_b$ of subspaces is contained in a dependent triple (a triple $V_{a},V_b,V_c$ contained in a $2k$-