ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution of colors in Gallai colorings

74   0   0.0 ( 0 )
 نشر من قبل Balazs Patkos
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Gallai coloring is an edge coloring that avoids triangles colored with three different colors. Given integers $e_1ge e_2 ge dots ge e_k$ with $sum_{i=1}^ke_i={n choose 2}$ for some $n$, does there exist a Gallai $k$-coloring of $K_n$ with $e_i$ edges in color $i$? In this paper, we give several sufficient conditions and one necessary condition to guarantee a positive answer to the above question. In particular, we prove the existence of a Gallai-coloring if $e_1-e_kle 1$ and $k le lfloor n/2rfloor$. We prove that for any integer $kge 3$ there is a (unique) integer $g(k)$ with the following property: there exists a Gallai $k$-coloring of $K_n$ with $e_i$ edges in color $i$ for every $e_1ledots le e_k$ satisfying $sum_{i=1}^ke_i={nchoose 2}$, if and only if $nge g(k)$. We show that $g(3)=5$, $g(4)=8$, and $2k-2le g(k)le 8k^2+1$ for every $kge 3$.



قيم البحث

اقرأ أيضاً

We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+epsilon)k^2$, where $epsilonto 0$ as $kto infty$. This bound is essentially tight.
A Gallai-coloring (Gallai-$k$-coloring) is an edge-coloring (with colors from ${1, 2, ldots, k}$) of a complete graph without rainbow triangles. Given a graph $H$ and a positive integer $k$, the $k$-colored Gallai-Ramsey number $GR_k(H)$ is the minim um integer $n$ such that every Gallai-$k$-coloring of the complete graph $K_n$ contains a monochromatic copy of $H$. In this paper, we consider two extremal problems related to Gallai-$k$-colorings. First, we determine upper and lower bounds for the maximum number of edges that are not contained in any rainbow triangle or monochromatic triangle in a $k$-edge-coloring of $K_n$. Second, for $ngeq GR_k(K_3)$, we determine upper and lower bounds for the minimum number of monochromatic triangles in a Gallai-$k$-coloring of $K_{n}$, yielding the exact value for $k=3$. Furthermore, we determine the Gallai-Ramsey number $GR_k(K_4+e)$ for the graph on five vertices consisting of a $K_4$ with a pendant edge.
For fixed $p$ and $q$, an edge-coloring of the complete graph $K_n$ is said to be a $(p, q)$-coloring if every $K_p$ receives at least $q$ distinct colors. The function $f(n, p, q)$ is the minimum number of colors needed for $K_n$ to have a $(p, q)$- coloring. This function was introduced about 45 years ago, but was studied systematically by ErdH{o}s and Gy{a}rf{a}s in 1997, and is now known as the ErdH{o}s-Gy{a}rf{a}s function. In this paper, we study $f(n, p, q)$ with respect to Gallai-colorings, where a Gallai-coloring is an edge-coloring of $K_n$ without rainbow triangles. Combining the two concepts, we consider the function $g(n, p, q)$ that is the minimum number of colors needed for a Gallai-$(p, q)$-coloring of $K_n$. Using the anti-Ramsey number for $K_3$, we have that $g(n, p, q)$ is nontrivial only for $2leq qleq p-1$. We give a general lower bound for this function and we study how this function falls off from being equal to $n-1$ when $q=p-1$ and $pgeq 4$ to being $Theta(log n)$ when $q = 2$. In particular, for appropriate $p$ and $n$, we prove that $g=n-c$ when $q=p-c$ and $cin {1,2}$, $g$ is at most a fractional power of $n$ when $q=lfloorsqrt{p-1}rfloor$, and $g$ is logarithmic in $n$ when $2leq qleq lfloorlog_2 (p-1)rfloor+1$.
An emph{interval $t$-coloring} of a multigraph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors. A emph{cyclic interval $t$-coloring} of a multigr aph $G$ is a proper edge coloring with colors $1,dots,t$ such that the colors on the edges incident to every vertex of $G$ are colored by consecutive colors, under the condition that color $1$ is considered as consecutive to color $t$. Denote by $w(G)$ ($w_{c}(G)$) and $W(G)$ ($W_{c}(G)$) the minimum and maximum number of colors in a (cyclic) interval coloring of a multigraph $G$, respectively. We present some new sharp bounds on $w(G)$ and $W(G)$ for multigraphs $G$ satisfying various conditions. In particular, we show that if $G$ is a $2$-connected multigraph with an interval coloring, then $W(G)leq 1+leftlfloor frac{|V(G)|}{2}rightrfloor(Delta(G)-1)$. We also give several results towards the general conjecture that $W_{c}(G)leq |V(G)|$ for any triangle-free graph $G$ with a cyclic interval coloring; we establish that approximat
77 - Zeev Dvir , Guangda Hu 2014
In this work we study arrangements of $k$-dimensional subspaces $V_1,ldots,V_n subset mathbb{C}^ell$. Our main result shows that, if every pair $V_{a},V_b$ of subspaces is contained in a dependent triple (a triple $V_{a},V_b,V_c$ contained in a $2k$- dimensional space), then the entire arrangement must be contained in a subspace whose dimension depends only on $k$ (and not on $n$). The theorem holds under the assumption that $V_a cap V_b = {0}$ for every pair (otherwise it is false). This generalizes the Sylvester-Gallai theorem (or Kellys theorem for complex numbers), which proves the $k=1$ case. Our proof also handles arrangements in which we have many pairs (instead of all) appearing in dependent triples, generalizing the quantitative results of Barak et. al. [BDWY-pnas]. One of the main ingredients in the proof is a strengthening of a Theorem of Barthe [Bar98] (from the $k=1$ to $k>1$ case) proving the existence of a linear map that makes the angles between pairs of subspaces large on average. Such a mapping can be found, unless there is an obstruction in the form of a low dimensional subspace intersecting many of the spaces in the arrangement (in which case one can use a different argument to prove the main theorem).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا