ﻻ يوجد ملخص باللغة العربية
We study the spectrum of rank $2$ torsion free sheaves on $mathbb{P}^3$ with aim of producing examples of distinct irreducible components of the moduli space with the same spetrcum answering the question presented by Rao for the case of torsion free sheaves. In order to do so, we provide a full description of the spectrum of the sheaves in the moduli space of semistable rank $2$ torsion free sheaves on $mathbb{P}^3$ with Chern classes $(c_1, c_2,c_3)$ equals to $(-1,2,0)$ and $(0,3,0)$.
We describe new components of the Gieseker--Maruyama moduli scheme $mathcal{M}(n)$ of semistable rank 2 sheaves $E$ on $mathbb{P}^3$ with $c_1(E)=0$, $c_2(E)=n$ and $c_3(E)=0$ whose generic point corresponds to non locally free sheaves. We show that
We show that for many moduli spaces M of torsion sheaves on K3 surfaces S, the functor D(S) -> D(M) induced by the universal sheaf is a P-functor, hence can be used to construct an autoequivalence of D(M), and that this autoequivalence can be factore
The goal of this paper is to construct a compactification of the moduli space of degree $d ge 5$ surfaces in $mathbb{P}^3$, i.e. a parameter space whose interior points correspond to (equivalence classes of) smooth surfaces in $mathbb{P}^3$ and whose
In this article we study the Gieseker-Maruyama moduli spaces $mathcal{B}(e,n)$ of stable rank 2 algebraic vector bundles with Chern classes $c_1=ein{-1,0}, c_2=nge1$ on the projective space $mathbb{P}^3$. We construct two new infinite series $Sigma_0
We study the problem of rationality of an infinite series of components, the so-called Ein components, of the Gieseker-Maruyama moduli space $M(e,n)$ of rank 2 stable vector bundles with the first Chern class $e=0$ or -1 and all possible values of th