ﻻ يوجد ملخص باللغة العربية
The observation of gravitational waves from compact binary coalescences by LIGO and Virgo has begun a new era in astronomy. A critical challenge in making detections is determining whether loud transient features in the data are caused by gravitational waves or by instrumental or environmental sources. The citizen-science project emph{Gravity Spy} has been demonstrated as an efficient infrastructure for classifying known types of noise transients (glitches) through a combination of data analysis performed by both citizen volunteers and machine learning. We present the next iteration of this project, using similarity indices to empower citizen scientists to create large data sets of unknown transients, which can then be used to facilitate supervised machine-learning characterization. This new evolution aims to alleviate a persistent challenge that plagues both citizen-science and instrumental detector work: the ability to build large samples of relatively rare events. Using two families of transient noise that appeared unexpectedly during LIGOs second observing run (O2), we demonstrate the impact that the similarity indices could have had on finding these new glitch types in the Gravity Spy program.
In this paper, we report on the construction of a deep Artificial Neural Network (ANN) to localize simulated gravitational wave signals in the sky with high accuracy. We have modelled the sky as a sphere and have considered cases where the sphere is
Gravitational waves are theorized to be gravitationally lensed when they propagate near massive objects. Such lensing effects cause potentially detectable repeated gravitational wave patterns in ground- and space-based gravitational wave detectors. T
In this paper, we seek to answer the question given a rotating core collapse gravitational wave signal, can we determine its nuclear equation of state?. To answer this question, we employ deep convolutional neural networks to learn visual and tempora
With the advent of gravitational wave astronomy, techniques to extend the reach of gravitational wave detectors are desired. In addition to the stellar-mass black hole and neutron star mergers already detected, many more are below the surface of the
We describe a multivariate classifier for candidate events in a templated search for gravitational-wave (GW) inspiral signals from neutron-star--black-hole (NS-BH) binaries, in data from ground-based detectors where sensitivity is limited by non-Gaus