ترغب بنشر مسار تعليمي؟ اضغط هنا

2-Entity RANSAC for robust visual localization in changing environment

75   0   0.0 ( 0 )
 نشر من قبل Yanmei Jiao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual localization has attracted considerable attention due to its low-cost and stable sensor, which is desired in many applications, such as autonomous driving, inspection robots and unmanned aerial vehicles. However, current visual localization methods still struggle with environmental changes across weathers and seasons, as there is significant appearance variation between the map and the query image. The crucial challenge in this situation is that the percentage of outliers, i.e. incorrect feature matches, is high. In this paper, we derive minimal closed form solutions for 3D-2D localization with the aid of inertial measurements, using only 2 pairs of point matches or 1 pair of point match and 1 pair of line match. These solutions are further utilized in the proposed 2-entity RANSAC, which is more robust to outliers as both line and point features can be used simultaneously and the number of matches required for pose calculation is reduced. Furthermore, we introduce three feature sampling strategies with different advantages, enabling an automatic selection mechanism. With the mechanism, our 2-entity RANSAC can be adaptive to the environments with different distribution of feature types in different segments. Finally, we evaluate the method on both synthetic and real-world datasets, validating its performance and effectiveness in inter-session scenarios.



قيم البحث

اقرأ أيضاً

89 - Yanmei Jiao , Lilu Liu , Bo Fu 2020
Visual localization for planar moving robot is important to various indoor service robotic applications. To handle the textureless areas and frequent human activities in indoor environments, a novel robust visual localization algorithm which leverage s dense correspondence and sparse depth for planar moving robot is proposed. The key component is a minimal solution which computes the absolute camera pose with one 3D-2D correspondence and one 2D-2D correspondence. The advantages are obvious in two aspects. First, the robustness is enhanced as the sample set for pose estimation is maximal by utilizing all correspondences with or without depth. Second, no extra effort for dense map construction is required to exploit dense correspondences for handling textureless and repetitive texture scenes. That is meaningful as building a dense map is computational expensive especially in large scale. Moreover, a probabilistic analysis among different solutions is presented and an automatic solution selection mechanism is designed to maximize the success rate by selecting appropriate solutions in different environmental characteristics. Finally, a complete visual localization pipeline considering situations from the perspective of correspondence and depth density is summarized and validated on both simulation and public real-world indoor localization dataset. The code is released on github.
The growing popularity of autonomous systems creates a need for reliable and efficient metric pose retrieval algorithms. Currently used approaches tend to rely on nearest neighbor search of binary descriptors to perform the 2D-3D matching and guarant ee realtime capabilities on mobile platforms. These methods struggle, however, with the growing size of the map, changes in viewpoint or appearance, and visual aliasing present in the environment. The rigidly defined descriptor patterns only capture a limited neighborhood of the keypoint and completely ignore the overall visual context. We propose LandmarkBoost - an approach that, in contrast to the conventional 2D-3D matching methods, casts the search problem as a landmark classification task. We use a boosted classifier to classify landmark observations and directly obtain correspondences as classifier scores. We also introduce a formulation of visual context that is flexible, efficient to compute, and can capture relationships in the entire image plane. The original binary descriptors are augmented with contextual information and informative features are selected by the boosting framework. Through detailed experiments, we evaluate the retrieval quality and performance of LandmarkBoost, demonstrating that it outperforms common state-of-the-art descriptor matching methods.
70 - Shu-Hao Yeh , Dezhen Song 2019
Robust estimation of camera motion under the presence of outlier noise is a fundamental problem in robotics and computer vision. Despite existing efforts that focus on detecting motion and scene degeneracies, the best existing approach that builds on Random Consensus Sampling (RANSAC) still has non-negligible failure rate. Since a single failure can lead to the failure of the entire visual simultaneous localization and mapping, it is important to further improve robust estimation algorithm. We propose a new robust camera motion estimator (RCME) by incorporating two main changes: model-sample consistence test at model instantiation step and inlier set quality test that verifies model-inlier consistence using differential entropy. We have implemented our RCME algorithm and tested it under many public datasets. The results have shown consistent reduction in failure rate when comparing to RANSAC-based Gold Standard approach. More specifically, the overall failure rate for indoor environments has reduced from 1.41% to 0.02%.
58 - Yanmei Jiao , Yue Wang , Bo Fu 2020
Map based visual inertial localization is a crucial step to reduce the drift in state estimation of mobile robots. The underlying problem for localization is to estimate the pose from a set of 3D-2D feature correspondences, of which the main challeng e is the presence of outliers, especially in changing environment. In this paper, we propose a robust solution based on efficient global optimization of the consensus maximization problem, which is insensitive to high percentage of outliers. We first introduce translation invariant measurements (TIMs) for both points and lines to decouple the consensus maximization problem into rotation and translation subproblems, allowing for a two-stage solver with reduced solution dimensions. Then we show that (i) the rotation can be calculated by minimizing TIMs using only 1-dimensional branch-and-bound (BnB), (ii) the translation can be found by running 1-dimensional search for three times with prioritized progressive voting. Compared with the popular randomized solver, our solver achieves deterministic global convergence without depending on an initial value. While compared with existing BnB based methods, ours is exponentially faster. Finally, by evaluating the performance on both simulation and real-world datasets, our approach gives accurate pose even when there are 90% outliers (only 2 inliers).
RANSAC is an important algorithm in robust optimization and a central building block for many computer vision applications. In recent years, traditionally hand-crafted pipelines have been replaced by deep learning pipelines, which can be trained in a n end-to-end fashion. However, RANSAC has so far not been used as part of such deep learning pipelines, because its hypothesis selection procedure is non-differentiable. In this work, we present two different ways to overcome this limitation. The most promising approach is inspired by reinforcement learning, namely to replace the deterministic hypothesis selection by a probabilistic selection for which we can derive the expected loss w.r.t. to all learnable parameters. We call this approach DSAC, the differentiable counterpart of RANSAC. We apply DSAC to the problem of camera localization, where deep learning has so far failed to improve on traditional approaches. We demonstrate that by directly minimizing the expected loss of the output camera poses, robustly estimated by RANSAC, we achieve an increase in accuracy. In the future, any deep learning pipeline can use DSAC as a robust optimization component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا