ﻻ يوجد ملخص باللغة العربية
We report an experimental demonstration of sub-wavelength interference without correlation. Typically, people can achieve sub-wavelength effect with correlation measurement no matter by using bi-photon or thermal light sources. Here we adopt a thermal light source. And we count the realizations in which the intensities of the definite symmetric points are above or below a certain threshold. The distribution of numbers of these realizations who satisfy the restriction will show a sub-wavelength effect. With proper constrictions, positive and negative interference patterns are demonstrated.
The measurement of the wavelength of light using speckle is a promising tool for the realization of compact and precise wavemeters and spectrometers. However, the resolution of these devices is limited by strong correlations between the speckle patte
We investigate beam scanning by lateral feed displacement in novel metasurface based reflector antennas with extremely short focal distances. Electric field distributions of the waves reflected from the antenna are studied numerically and experimenta
We propose a new scheme to achieve sub-Rayleigh resolution of interference pattern with independent laser beams. We perform an experimental observation of a double-slit interference with two orthogonally polarized laser beams. The resolution of the i
A nanoparticle detection scheme with single particle resolution is presented. The sensor contains only a taper fiber thus offering the advantages of compactness and installation flexibility. Sensing method is based on monitoring the transmitted light
The finite-difference time-domain (FDTD) method is employed to solve the three dimensional Maxwell equation for the situation of near-field microscopy using a sub-wavelength aperture. Experimental result on unexpected high spatial resolution is reproduced by our computer simulation.