ﻻ يوجد ملخص باللغة العربية
The habitable zone (HZ) is the region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. The classical HZ definition makes a number of assumptions common to the Earth, including assuming that the most important greenhouse gases for habitable planets are CO2 and H2O, habitable planets orbit main-sequence stars, and that the carbonate-silicate cycle is a universal process on potentially habitable planets. Here, we discuss these and other predictions for the habitable zone and the observations that are needed to test them. We also, for the first time, argue why A-stars may be interesting HZ prospects. Instead of relying on unverified extrapolations from our Earth, we argue that future habitability studies require first principles approaches where temporal, spatial, physical, chemical, and biological systems are dynamically coupled. We also suggest that next-generation missions are only the beginning of a much more data-filled era in the not-too-distant future, when possibly hundreds to thousands of HZ planets will yield the statistical data we need to go beyond just finding habitable zone planets to actually determining which ones are most likely to exhibit life.
We present the Transiting Exoplanet Survey Satellite (TESS) Habitable Zone Stars Catalog, a list of 1822 nearby stars with a TESS magnitude brighter than T = 12 and reliable distances from Gaia DR2, around which the NASAs TESS mission can detect tran
We use a one-dimensional (1-D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 M$_{E}$ and 5 M$_{E}$ around circumbinary stars of various spectral type combinations. Specifically, we consider
We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas, and that bars or tens of bars of primordial H2-He mixtures can maintain surface temperatures above the freezing point of water well beyond
The Habitable zone Planet Finder (HPF) is a fiber fed precise radial velocity spectrograph at the 10 m Hobby Eberly Telescope (HET). Due to its fixed altitude design, the HET pupil changes appreciably across a track, leading to significant changes of
Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at