ﻻ يوجد ملخص باللغة العربية
We study the optimization of any quantum process by minimizing the randomness in the measurement result at the output of that quantum process. We conceptualize and propose a measure of such randomness and inquire whether an optimization of the quantum process based on that measure, can reach the point where the process operates with maximum fidelity. We consider approximate quantum cloning and teleportation processes, and find, in particular, that the optimal approximate state-dependent quantum cloning machine obtained by maximizing the fidelity is different from that obtained by minimizing the randomness.
Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entang
If quantum mechanics is taken for granted the randomness derived from it may be vacuous or even delusional, yet sufficient for many practical purposes. Random quantum events are intimately related to the emergence of both space-time as well as the id
The advantages of quantum random number generators (QRNGs) over pseudo-random number generators (PRNGs) are normally attributed to the nature of quantum measurements. This is often seen as implying the superiority of the sequences of bits themselves
Pseudo-random number generators are widely used in many branches of science, mainly in applications related to Monte Carlo methods, although they are deterministic in design and, therefore, unsuitable for tackling fundamental problems in security and
In contrast with software-generated randomness (called pseudo-randomness), quantum randomness is provable incomputable, i.e. it is not exactly reproducible by any algorithm. We provide experimental evidence of incomputability --- an asymptotic proper