ترغب بنشر مسار تعليمي؟ اضغط هنا

Haptic Simulator for Liver Diagnostics through Palpation

131   0   0.0 ( 0 )
 نشر من قبل Felix Hamza-Lup
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Mechanical properties of biological tissue for both histological and pathological considerations are often required in disease diagnostics. Such properties can be simulated and explored with haptic technology. Development of cost effective haptic-based simulators and their introduction in the minimally invasive surgery learning cycle is still in its infancy. Receiving pretraining in a core set of surgical skills can reduce skill acquisition time and risks. We present the development of a visuo-haptic simulator module designed to train internal organs disease diagnostics through palpation. The module is part of a set of tools designed to train and improve basic surgical skills for minimally invasive surgery.


قيم البحث

اقرأ أيضاً

Preoperative gestures include tactile sampling of the mechanical properties of biological tissue for both histological and pathological considerations. Tactile properties used in conjunction with visual cues can provide useful feedback to the surgeon . Development of novel cost effective haptic-based simulators and their introduction in the minimally invasive surgery learning cycle can absorb the learning curve for your residents. Receiving pre-training in a core set of surgical skills can reduce skill acquisition time and risks. We present the integration of a real-time surface stiffness adjustment algorithm and a novel paradigm -- force maps -- in a visuo-haptic simulator module designed to train internal organs disease diagnostics through palpation.
We propose a new approach for interaction in Virtual Reality (VR) using mobile robots as proxies for haptic feedback. This approach allows VR users to have the experience of sharing and manipulating tangible physical objects with remote collaborators . Because participants do not directly observe the robotic proxies, the mapping between them and the virtual objects is not required to be direct. In this paper, we describe our implementation, various scenarios for interaction, and a preliminary user study.
A common and effective form of social touch is stroking on the forearm. We seek to replicate this stroking sensation using haptic illusions. This work compares two methods that provide sequential discrete stimulation: sequential normal indentation an d sequential lateral skin-slip using discrete actuators. Our goals are to understand which form of stimulation more effectively creates a continuous stroking sensation, and how many discrete contact points are needed. We performed a study with 20 participants in which they rated sensations from the haptic devices on continuity and pleasantness. We found that lateral skin-slip created a more continuous sensation, and decreasing the number of contact points decreased the continuity. These results inform the design of future wearable haptic devices and the creation of haptic signals for effective social communication.
Recent advances in haptic hardware and software technology have generated interest in novel, multimodal interfaces based on the sense of touch. Such interfaces have the potential to revolutionize the way we think about human computer interaction and open new possibilities for simulation and training in a variety of fields. In this paper we review several frameworks, APIs and toolkits for haptic user interface development. We explore these software components focusing on minimally invasive surgical simulation systems. In the area of medical diagnosis, there is a strong need to determine mechanical properties of biological tissue for both histological and pathological considerations. Therefore we focus on the development of affordable visuo-haptic simulators to improve practice-based education in this area. We envision such systems, designed for the next generations of learners that enhance their knowledge in connection with real-life situations while they train in mandatory safety conditions.
Surgeons must accomplish complex technical and intellectual tasks that can generate unexpected and serious challenges with little or no room for error. In the last decade, computer simulations have played an increasing role in surgical training, pre- operative planning, and biomedical research. Specifically, visuo-haptic simulations have been the focus of research to develop advanced e-Learning systems facilitating surgical training. The cost of haptic hardware was reduced through mass scale production and as haptics gained popularity in the gaming industry. Visuo-haptic simulations combine the tactile sense with visual information and provide training scenarios with a high degree of reality. For surgical training, such scenarios can be used as ways to gain, improve, and assess resident and expert surgeons skills and knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا