ﻻ يوجد ملخص باللغة العربية
The anomalous concentration of radiocarbon in 774/775 attracted intense discussion on its origin, including the possible extreme solar event(s) exceeding any events in observational history. Anticipating such extreme solar events, auroral records were also surveyed in historical documents and those including the red celestial sign after sunset in the Anglo-Saxon Chronicle (ASC) were subjected to consideration. Usoskin et al. (2013: U13) interpreted this record as an aurora and suggested enhanced solar activity around 774/775. Conversely, Neuhauser and Neuhauser (2015a, 2015b: N15a and N15b) interpreted after sunset as during sunset or twilight; they considered this sign as a halo display and suggested a solar minimum around 774. However, so far these records have not been discussed in comparison with eyewitness auroral records during the known extreme space-weather events, although they were discussed in relationship with potential extreme events in 774/775. Therefore, we reconstruct the observational details based on the original records in the ASC and philological references, compare them with eyewitness auroral observations during known extreme space-weather events, and consider contemporary solar activity. We clarify the observation was indeed after sunset, reject the solar halo hypothesis, define the observational time span between 25 Mar. 775 and 25 Dec. 777, and note the parallel halo drawing in 806 in the ASC shown in N15b was not based on the original observation in England. We show examples of eyewitness auroral observations during twilight in known space-weather events, and this celestial sign does not contradict the observational evidence. Accordingly, we consider this event happened after the onset of the event in 774/775, but shows relatively enhanced solar activity, with other historical auroral records in the mid-770s, as also confirmed by the Be data from ice cores.
Auroral records found in historical archives and cosmogenic isotopes found in natural archives have served as sound proxies of coronal mass ejections (CMEs) and solar energetic particles (SEPs), respectively, for dates prior to the onset of telescopi
The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been
Annual oscillations have been detected in many indices of solar activity during many cycles. Recent multi spacecraft observations of coronal bright points revealed slow retrograde toroidal phase drift (with the speed of 3 m/s of 1 yr oscillations, wh
Solar modulation potential (SMP) reconstructions based on cosmogenic nuclide records reflect changes in the open solar magnetic field and can therefore help us obtain information on the behaviour of the open solar magnetic field over the Holocene per
Transits of exoplanets across cool stars contain blended information about structures on the stellar surface and about the planetary body and atmosphere. To advance understanding of how this information is entangled, a surface-flux transport code, ba