ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the role of X-ray reprocessing and irradiation in the anomalous bright optical outbursts of A0538-66

74   0   0.0 ( 0 )
 نشر من قبل Lorenzo Ducci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1981, the Be/X-ray binary (Be/XRB) A0538-66 showed outbursts characterized by high peak luminosities in the X-ray and optical bands. The optical outbursts were qualitatively explained as X-ray reprocessing in a gas cloud surrounding the binary system. Since then, further important information about A0538-66 have been obtained, and sophisticated photoionization codes have been developed to calculate the radiation emerging from a gas nebula illuminated by a central X-ray source. In the light of the new information and tools available, we studied again the enhanced optical emission displayed by A0538-66 to understand the mechanisms responsible for these unique events among the class of Be/XRBs. We performed about 10^5 simulations of a gas envelope photoionized by an X-ray source. We assumed for the shape of the gas cloud either a sphere or a circumstellar disc observed edge-on. We studied the effects of varying the main properties of the envelope and the influence of different input X-ray spectra on the optical/UV emission emerging from the photoionized cloud. We compared the computed spectra with the IUE spectrum and photometric UBV measurements obtained during the outburst of 29 April 1981. We also explored the role played by the X-ray heating of the surface of the donor star irradiated by the X-ray emission of the neutron star (NS). We found that reprocessing in a spherical cloud with a shallow radial density distribution can reproduce the optical/UV emission. To our knowledge, this configuration has never been observed either in A0538-66 during other epochs or in other Be/XRBs. We found, contrary to the case of most other Be/XRBs, that the optical/UV radiation produced by the X-ray heating of the surface of the donor star irradiated by the NS is non-negligible, due to the particular orbital parameters of this system that bring the NS very close to its companion.

قيم البحث

اقرأ أيضاً

A0538-66 is a Be/X-ray binary (Be/XRB) hosting a 69 ms pulsar. It emitted bright X-ray outbursts with peak luminosity up to $sim 10^{39}$ erg/s during the first years after its discovery in 1977. Since then, it was always seen in quiescence or during outbursts with $L_x lesssim 4 times 10^{37}$ erg/s. In 2018 we carried out XMM-Newton observations of A0538-66 during three consecutive orbits when the pulsar was close to periastron. In the first two observations we discovered a remarkable variability, with flares of typical durations between $sim$2-50 s and peak luminosities up to $sim 4times 10^{38}$ erg/s (0.2-10 keV). Between the flares the luminosity was $sim 2times 10^{35}$ erg/s. The flares were absent in the third observation, during which A0538-66 had a steady luminosity of $2times 10^{34}$ erg/s. In all observations, the X-ray spectra consist of a softer component, well described by an absorbed power law with photon index $Gamma_1approx 2-4$ and $N_Happrox 10^{21}$ cm$^{-2}$, plus a harder power-law component ($Gamma_2approx 0-0.5$) dominating above $sim$2 keV. The softer component shows larger flux variations than the harder one, and a moderate hardening correlated with the luminosity. The fast flaring activity seen in these observations was never observed before in A0538-66, nor, to our best knowledge, in other Be/XRBs. We explore the possibility that during our observations the source was accreting in a regime of nearly spherically symmetric inflow. In this case, an atmosphere can form around the neutron star magnetosphere and the observed variability can be explained by transitions between the accretion and supersonic propeller regimes.
In 2018, XMM-Newton observed the awakening in X-rays of the Be/X-ray binary (Be/XRB) A0538-66. It showed bright and fast flares close to periastron with properties that had never been observed in other Be/XRBs before. We report the results from the o bservations of A0538-66 collected during the first all-sky survey of eROSITA, an X-ray telescope (0.2-10 keV) on board the Spektrum-Roentgen-Gamma (SRG) satellite. eROSITA caught two flares within one orbital cycle at orbital phases $phi = 0.29$ and $phi = 0.93$ (where $phi=0$ corresponds to periastron), with peak luminosities of $sim 2-4 times 10^{36}$ erg/s (0.2-10 keV) and durations of $42 leq Delta t_{rm fl} leq 5.7times 10^4$ s. The flare observed at $phi approx 0.29$ shows that the neutron star can accrete considerably far from periastron, although it is expected to be outside of the circumstellar disk, thus providing important new information about the plasma environment surrounding the binary system. We also report the results from the photometric monitoring of A0538-66 carried out with the REM, OGLE, and MACHO telescopes from January 1993 until March 2020. We found that the two sharp peaks that characterize the orbital modulation in the optical occur asymmetrically in the orbit, relative to the position of the donor star.
218 - P. Kretschmar 2004
We present XMM-Newton observations of the recurrent Be/X-ray transient A0538-66, situated in the Large Magellanic Cloud, in the quiescent state. Despite a very low luminosity state of (5-8)E33 ergs/s in the range 0.3-10 keV, the source is clearly det ected up to ~8 keV. and can be fitted using either a power law with photon index alpha=1.9+-0.3 or a bremsstrahlung spectrum with kT=3.9+3.9-1.7 keV. The spectral analysis confirms that the off-state spectrum is hard without requiring any soft component, contrary to the majority of neutron stars observed in quiescence up to now.
Disc instability models predict that for X-ray binaries in quiescence, there should be a brightening of the optical flux prior to an X-ray outburst. Tracking the X-ray variations of X-ray binaries in quiescence is generally not possible, so optical m onitoring provides the best means to measure the mass accretion rate variability between outbursts, and to identify the beginning stages of new outbursts. With our regular Faulkes Telescope/Las Cumbres Observatory (LCO) monitoring we are routinely detecting the optical rise of new X-ray binary outbursts before they are detected by X-ray all-sky monitors. We present examples of detections of an optical rise in X-ray binaries prior to X-ray detection. We also present initial optical monitoring of the new black hole transient MAXI J1820+070 (ASASSN-18ey) with the Faulkes, LCO telescopes and Al Sadeem Observatory in Abu Dhabi, UAE. Finally, we introduce our new real-time data analysis pipeline, the X-ray Binary New Early Warning System (XB-NEWS) which aims to detect and announce new X-ray binary outbursts within a day of first optical detection. This will allow us to trigger X-ray and multi-wavelength campaigns during the very early stages of outbursts, to constrain the outburst triggering mechanism.
Lags measured from correlated X-ray/UV/optical monitoring of AGN allow us to determine whether UV/optical variability is driven by reprocessing of X-rays or X-ray variability is driven by UV/optical seed photon variations. We present the results of t he largest study to date of the relationship between the X-ray, UV and optical variability in an AGN with 554 observations, over a 750d period, of the Seyfert 1 galaxy NGC 5548 with Swift. There is a good overall correlation between the X-ray and UV/optical bands, particularly on short timescales (tens of days). These bands lag the X-ray band with lags which are proportional to wavelength to the power 1.23+/-0.31. This power is very close to the power (4/3) expected if short timescale UV/optical variability is driven by reprocessing of X-rays by a surrounding accretion disc. The observed lags, however, are longer than expected from a standard Shakura-Sunyaev accretion disc with X-ray heating, given the currently accepted black hole mass and accretion rate values, but can be explained with a slightly larger mass and accretion rate, and a generally hotter disc. Some long term UV/optical variations are not paralleled exactly in the X-rays, suggesting an additional component to the UV/optical variability arising perhaps from accretion rate perturbations propagating inwards through the disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا