ترغب بنشر مسار تعليمي؟ اضغط هنا

Categorical Equivalence and the Renormalization Group

67   0   0.0 ( 0 )
 نشر من قبل Eric Sharpe
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Eric Sharpe




اسأل ChatGPT حول البحث

In this article we review how categorical equivalences are realized by renormalization group flow in physical realizations of stacks, derived categories, and derived schemes. We begin by reviewing the physical realization of sigma models on stacks, as (universality classes of) gauged sigma models, and look in particular at properties of sigma models on gerbes (equivalently, sigma models with restrictions on nonperturbative sectors), and decomposition, in which two-dimensional sigma models on gerbes decompose into disjoint unions of ordinary theories. We also discuss stack structures on examples of moduli spaces of SCFTs, focusing on elliptic curves, and implications of subtleties there for string dualities in other dimensions. In the second part of this article, we review the physical realization of derived categories in terms of renormalization group flow (time evolution) of combinations of D-branes, antibranes, and tachyons. In the third part of this article, we review how Landau-Ginzburg models provide a physical realization of derived schemes, and also outline an example of a derived structure on a moduli spaces of SCFTs.



قيم البحث

اقرأ أيضاً

Constrained Differential Renormalization (CDR) and the constrained version of Implicit Regularization (IR) are two regularization independent techniques that do not rely on dimensional continuation of the space-time. These two methods which have rath er distinct basis have been successfully applied to several calculations which show that they can be trusted as practical, symmetry invariant frameworks (gauge and supersymmetry included) in perturbative computations even beyond one-loop order. In this paper, we show the equivalence between these two methods at one-loop order. We show that the configuration space rules of CDR can be mapped into the momentum space procedures of Implicit Regularization, the major principle behind this equivalence being the extension of the properties of regular distributions to the regularized ones.
66 - A.S. Kapoyannis 2000
We explore the applicability of the exact renormalization group to the study of tunnelling phenomena. We investigate quantum-mechanical systems whose energy eigenstates are affected significantly by tunnelling through a barrier in the potential. With in the approximation of the derivative expansion, we find that the exact renormalization group predicts the correct qualitative behaviour for the lowest energy eigenvalues. However, quantitative accuracy is achieved only for potentials with small barriers. For large barriers, the use of alternative methods, such as saddle-point expansions, can provide quantitative accuracy.
The vacuum structure is probed by boundary conditions. The behaviour of thermodynamical quantities like free energy, boundary entropy and entanglement entropy under the boundary renormalization group flow are analysed in 2D conformal field theories. The results show that whereas vacuum energy and boundary entropy turn out to be very sensitive to boundary conditions, the vacuum entanglement entropy is independent of boundary properties when the boundary of the entanglement domain does not overlap the boundary of the physical space. In all cases the second law of thermodynamics holds along the boundary renormalization group flow.
201 - Shoichi Ichinose 2011
Casimir energy is calculated for 5D scalar theory in the {it warped} geometry. A new regularization, called {it sphere lattice regularization}, is taken. The regularized configuration is {it closed-string like}. We numerically evaluate $La$(4D UV-cut off), $om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {it finitely} obtained after the {it proper renormalization procedure.} The {it warp parameter} $om$ suffers from the {it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.
172 - J. Berges , G. Hoffmeister 2008
Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description . For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا