ترغب بنشر مسار تعليمي؟ اضغط هنا

Hair Segmentation on Time-of-Flight RGBD Images

68   0   0.0 ( 0 )
 نشر من قبل Yuanxi Ma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust segmentation of hair from portrait images remains challenging: hair does not conform to a uniform shape, style or even color; dark hair in particular lacks features. We present a novel computational imaging solution that tackles the problem from both input and processing fronts. We explore using Time-of-Flight (ToF) RGBD sensors on recent mobile devices. We first conduct a comprehensive analysis to show that scattering and inter-reflection cause different noise patterns on hair vs. non-hair regions on ToF images, by changing the light path and/or combining multiple paths. We then develop a deep network based approach that employs both ToF depth map and the RGB gradient maps to produce an initial hair segmentation with labeled hair components. We then refine the result by imposing ToF noise prior under the conditional random field. We collect the first ToF RGBD hair dataset with 20k+ head images captured on 30 human subjects with a variety of hairstyles at different view angles. Comprehensive experiments show that our approach outperforms the RGB based techniques in accuracy and robustness and can handle traditionally challenging cases such as dark hair, similar hair/background, similar hair/foreground, etc.

قيم البحث

اقرأ أيضاً

It is convenient to calibrate time-of-flight cameras by established methods, using images of a chequerboard pattern. The low resolution of the amplitude image, however, makes it difficult to detect the board reliably. Heuristic detection methods, bas ed on connected image-components, perform very poorly on this data. An alternative, geometrically-principled method is introduced here, based on the Hough transform. The projection of a chequerboard is represented by two pencils of lines, which are identified as oriented clusters in the gradient-data of the image. A projective Hough transform is applied to each of the two clusters, in axis-aligned coordinates. The range of each transform is properly bounded, because the corresponding gradient vectors are approximately parallel. Each of the two transforms contains a series of collinear peaks; one for every line in the given pencil. This pattern is easily detected, by sweeping a dual line through the transform. The proposed Hough-based method is compared to the standard OpenCV detection routine, by application to several hundred time-of-flight images. It is shown that the new method detects significantly more calibration boards, over a greater variety of poses, without any overall loss of accuracy. This conclusion is based on an analysis of both geometric and photometric error.
159 - Maciej Halber , Yifei Shi , Kai Xu 2019
In depth-sensing applications ranging from home robotics to AR/VR, it will be common to acquire 3D scans of interior spaces repeatedly at sparse time intervals (e.g., as part of regular daily use). We propose an algorithm that analyzes these rescans to infer a temporal model of a scene with semantic instance information. Our algorithm operates inductively by using the temporal model resulting from past observations to infer an instance segmentation of a new scan, which is then used to update the temporal model. The model contains object instance associations across time and thus can be used to track individual objects, even though there are only sparse observations. During experiments with a new benchmark for the new task, our algorithm outperforms alternate approaches based on state-of-the-art networks for semantic instance segmentation.
We present a system for real-time RGBD-based estimation of 3D human pose. We use parametric 3D deformable human mesh model (SMPL-X) as a representation and focus on the real-time estimation of parameters for the body pose, hands pose and facial expre ssion from Kinect Azure RGB-D camera. We train estimators of body pose and facial expression parameters. Both estimators use previously published landmark extractors as input and custom annotated datasets for supervision, while hand pose is estimated directly by a previously published method. We combine the predictions of those estimators into a temporally-smooth human pose. We train the facial expression extractor on a large talking face dataset, which we annotate with facial expression parameters. For the body pose we collect and annotate a dataset of 56 people captured from a rig of 5 Kinect Azure RGB-D cameras and use it together with a large motion capture AMASS dataset. Our RGB-D body pose model outperforms the state-of-the-art RGB-only methods and works on the same level of accuracy compared to a slower RGB-D optimization-based solution. The combined system runs at 30 FPS on a server with a single GPU. The code will be available at https://saic-violet.github.io/rgbd-kinect-pose
We present a technique for detecting topological invariants -- Chern numbers -- from time-of-flight images of ultra-cold atoms. We show that the Chern numbers of integer quantum Hall states of lattice fermions leave their fingerprints in the atoms mo mentum distribution. We analytically demonstrate that the number of local maxima in the momentum distribution is equal to the Chern number in two limiting cases, for large hopping anisotropy and in the continuum limit. In addition, our numerical simulations beyond these two limits show that these local maxima persist for a range of parameters. Thus, an everyday observable in cold atom experiments can serve as a useful tool to characterize and visualize quantum states with non-trivial topology.
We exam various geometric active contour methods for radar image segmentation. Due to special properties of radar images, we propose our new model based on modified Chan-Vese functional. Our method is efficient in separating non-meteorological noises from meteorological images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا