ﻻ يوجد ملخص باللغة العربية
The classical problem of phase retrieval arises in various signal acquisition systems. Due to the ill-posed nature of the problem, the solution requires assumptions on the structure of the signal. In the last several years, sparsity and support-based priors have been leveraged successfully to solve this problem. In this work, we propose replacing the sparsity/support priors with generative priors and propose two algorithms to solve the phase retrieval problem. Our proposed algorithms combine the ideas from AltMin approach for non-convex sparse phase retrieval and projected gradient descent approach for solving linear inverse problems using generative priors. We empirically show that the performance of our method with projected gradient descent is superior to the existing approach for solving phase retrieval under generative priors. We support our method with an analysis of sample complexity with Gaussian measurements.
We consider the problem of compressed sensing and of (real-valued) phase retrieval with random measurement matrix. We derive sharp asymptotics for the information-theoretically optimal performance and for the best known polynomial algorithm for an en
Recovering high-resolution images from limited sensory data typically leads to a serious ill-posed inverse problem, demanding inversion algorithms that effectively capture the prior information. Learning a good inverse mapping from training data face
Any object on earth has two fundamental properties: it is finite, and it is made of atoms. Structural information about an object can be obtained from diffraction amplitude measurements that account for either one of these traits. Nyquist-sampling of
We present a new method for image reconstruction which replaces the projector in a projected gradient descent (PGD) with a convolutional neural network (CNN). CNNs trained as high-dimensional (image-to-image) regressors have recently been used to eff
In the compressive phase retrieval problem, or phaseless compressed sensing, or compressed sensing from intensity only measurements, the goal is to reconstruct a sparse or approximately $k$-sparse vector $x in mathbb{R}^n$ given access to $y= |Phi x|