ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Study of APIs and Frameworks for Haptic Application Development

95   0   0.0 ( 0 )
 نشر من قبل Felix Hamza-Lup
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The simulation of tactile sensation using haptic devices is increasingly investigated in conjunction with simulation and training. In this paper we explore the most popular haptic frameworks and APIs. We provide a comprehensive review and comparison of their features and capabilities, from the perspective of the need to develop a haptic simulator for medical training purposes. In order to compare the studied frameworks and APIs, we identified and applied a set of 11 criteria and we obtained a classification of platforms, from the perspective of our project. According to this classification, we used the best platform to develop a visual-haptic prototype for liver diagnostics.



قيم البحث

اقرأ أيضاً

137 - B. Kamala 2019
Process mining is a new emerging research trend over the last decade which focuses on analyzing the processes using event log and data. The raising integration of information systems for the operation of business processes provides the basis for inno vative data analysis approaches. Process mining has the strong relationship between with data mining so that it enables the bond between business intelligence approach and business process management. It focuses on end to end processes and is possible because of the growing availability of event data and new process discovery and conformance checking techniques. Process mining aims to discover, monitor and improve real processes by extracting knowledge from event logs readily available in todays information systems. The discovered process models can be used for a variety of analysis purposes. Many companies have adopted Process aware Information Systems for supporting their business processes in some form. These systems typically have their log events related to the actual business process executions. Proper analysis of Process Aware Information Systems execution logs can yield important knowledge and help organizations improve the quality of their services. This paper reviews and compares various process mining algorithms based on their input parameters, the techniques used and the output generated by them.
GraphQL is a query language and thereupon-based paradigm for implementing web Application Programming Interfaces (APIs) for client-server interactions. Using GraphQL, clients define precise, nested data-requirements in typed queries, which are resolv ed by servers against (possibly multiple) backend systems, like databases, object storages, or other APIs. Clients receive only the data they care about, in a single request. However, providers of existing REST(-like) APIs need to implement additional GraphQL interfaces to enable these advantages. We here assess the feasibility of automatically generating GraphQL wrappers for existing REST(-like) APIs. A wrapper, upon receiving GraphQL queries, translates them to requests against the target API. We discuss the challenges for creating such wrappers, including dealing with data sanitation, authentication, or handling nested queries. We furthermore present a prototypical implementation of OASGraph. OASGraph takes as input an OpenAPI Specification (OAS) describing an existing REST(-like) web API and generates a GraphQL wrapper for it. We evaluate OASGraph by running it, as well as an existing open source alternative, against 959 publicly available OAS. This experiment shows that OASGraph outperforms the existing alternative and is able to create a GraphQL wrapper for 89.5% of the APIs -- however, with limitations in many cases. A subsequent analysis of errors and warnings produced by OASGraph shows that missing or ambiguous information in the assessed OAS hinders creating complete wrappers. Finally, we present a use case of the IBM Watson Language Translator API that shows that small changes to an OAS allow OASGraph to generate more idiomatic and more expressive GraphQL wrappers.
Technology is an extremely potent tool that can be leveraged for human development and social good. Owing to the great importance of environment and human psychology in driving human behavior, and the ubiquity of technology in modern life, there is a need to leverage the insights and capabilities of both fields together for nudging people towards a behavior that is optimal in some sense (personal or social). In this regard, the field of persuasive technology, which proposes to infuse technology with appropriate design and incentives using insights from psychology, behavioral economics, and human-computer interaction holds a lot of promise. Whilst persuasive technology is already being developed and is at play in many commercial applications, it can have the great social impact in the field of Information and Communication Technology for Development (ICTD) which uses Information and Communication Technology (ICT) for human developmental ends such as education and health. In this paper we will explore what persuasive technology is and how it can be used for the ends of human development. To develop the ideas in a concrete setting, we present a case study outlining how persuasive technology can be used for human development in Pakistan, a developing South Asian country, that suffers from many of the problems that plague typical developing country.
With the ever-increasing use of web APIs in modern-day applications, it is becoming more important to test the system as a whole. In the last decade, tools and approaches have been proposed to automate the creation of system-level test cases for thes e APIs using evolutionary algorithms (EAs). One of the limiting factors of EAs is that the genetic operators (crossover and mutation) are fully randomized, potentially breaking promising patterns in the sequences of API requests discovered during the search. Breaking these patterns has a negative impact on the effectiveness of the test case generation process. To address this limitation, this paper proposes a new approach that uses agglomerative hierarchical clustering (AHC) to infer a linkage tree model, which captures, replicates, and preserves these patterns in new test cases. We evaluate our approach, called LT-MOSA, by performing an empirical study on 7 real-world benchmark applications w.r.t. branch coverage and real-fault detection capability. We also compare LT-MOSA with the two existing state-of-the-art white-box techniques (MIO, MOSA) for REST API testing. Our results show that LT-MOSA achieves a statistically significant increase in test target coverage (i.e., lines and branches) compared to MIO and MOSA in 4 and 5 out of 7 applications, respectively. Furthermore, LT-MOSA discovers 27 and 18 unique real-faults that are left undetected by MIO and MOSA, respectively.
Software vulnerabilities are usually caused by design flaws or implementation errors, which could be exploited to cause damage to the security of the system. At present, the most commonly used method for detecting software vulnerabilities is static a nalysis. Most of the related technologies work based on rules or code similarity (source code level) and rely on manually defined vulnerability features. However, these rules and vulnerability features are difficult to be defined and designed accurately, which makes static analysis face many challenges in practical applications. To alleviate this problem, some researchers have proposed to use neural networks that have the ability of automatic feature extraction to improve the intelligence of detection. However, there are many types of neural networks, and different data preprocessing methods will have a significant impact on model performance. It is a great challenge for engineers and researchers to choose a proper neural network and data preprocessing method for a given problem. To solve this problem, we have conducted extensive experiments to test the performance of the two most typical neural networks (i.e., Bi-LSTM and RVFL) with the two most classical data preprocessing methods (i.e., the vector representation and the program symbolization methods) on software vulnerability detection problems and obtained a series of interesting research conclusions, which can provide valuable guidelines for researchers and engineers. Specifically, we found that 1) the training speed of RVFL is always faster than BiLSTM, but the prediction accuracy of Bi-LSTM model is higher than RVFL; 2) using doc2vec for vector representation can make the model have faster training speed and generalization ability than using word2vec; and 3) multi-level symbolization is helpful to improve the precision of neural network models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا