ﻻ يوجد ملخص باللغة العربية
A number of detections have been made in the past few years of gravitational waves from compact binary coalescences. While there exist well-understood waveform models for signals from compact binary coalescences, many sources of gravitational waves are not well modeled, including potential long-transient signals from a binary neutron star post-merger remnant. Searching for these sources requires robust detection algorithms that make minimal assumptions about any potential signals. In this paper, we compare two unmodeled search schemes for long-transient gravitational waves, operating on cross-power spectrograms. One is an efficient algorithm first implemented for continuous wave searches, based on a hidden Markov model. The other is a seedless clustering method, which has been used in transient gravitational wave analysis in the past. We quantify the performance of both algorithms, including sensitivity and computational cost, by simulating synthetic signals with a special focus on sources like binary neutron star post-merger remnants. We demonstrate that the hidden Markov model tracking is a good option in model-agnostic searches for low signal-to-noise ratio signals. We also show that it can outperform the seedless method for certain categories of signals while also being computationally more efficient.
Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants (SNRs) are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semi-coherent search based on a h
Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10-1000s) GW emission associated with
Gravitational wave searches for continuous-wave signals from neutron stars are especially challenging when the stars spin frequency is unknown a priori from electromagnetic observations and wanders stochastically under the action of internal (e.g. su
We present an algorithm for the identification of transient noise artifacts (glitches) in cross-correlation searches for long O(10s) gravitational-wave transients. The algorithm utilizes the auto-power in each detector as a discriminator between well
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010,