ﻻ يوجد ملخص باللغة العربية
In the last decades, extended old stellar clusters have been observed. These extended objects cover a large range in masses, from extended clusters or faint fuzzies to ultra compact dwarf galaxies. It has been demonstrated that these extended objects can be the result of the merging of star clusters in cluster complexes (small regions in which dozens to hundreds of star clusters form). This formation channel is called the `Merging Star Cluster Scenario. This work tries to explain the formation of compact ellipticals in the same theoretical framework. Compact ellipticals are a comparatively rare class of spheroidal galaxies, possessing very small effective radii and high central surface brightnesses. With the use of numerical simulations we show that the merging star cluster scenario, adopted for higher masses, as found with those galaxies, can reproduce all major characteristics and the dynamics of these objects. This opens up a new formation channel to explain the existence of compact elliptical galaxies.
A clear link between a dwarf-dwarf merger event and enhanced star formation (SF) in the recent past was recently identified in the gas-dominated merger remnant VCC 848, offering by far the clearest view of a gas-rich late-stage dwarf-dwarf merger. We
Stars form with a complex and highly structured distribution. For a smooth star cluster to form from these initial conditions, the star cluster must erase this substructure. We study how substructure is removed using N-body simulations that realistic
It has long been speculated that many starburst or compact dwarf galaxies are resulted from dwarf-dwarf galaxy merging, but unequivocal evidence for this possibility has rarely been reported in the literature. We present the first study of deep optic
We have identified two channels for the formation of compact dwarf galaxies in the Illustris simulation by reconstructing mass and distance histories of candidates located in the vicinity of the simulations most massive cluster galaxies. One channel
We develop a simple analytical criterion to investigate the role of the environment on the onset of star formation. We will consider the main external agents that influence the star formation (i.e. ram pressure, tidal interaction, Rayleigh-Taylor and