ترغب بنشر مسار تعليمي؟ اضغط هنا

Nano-NMR based flow meter

82   0   0.0 ( 0 )
 نشر من قبل Daniel Cohen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microfludic channels are now a well established platform for many purposes, including bio-medical research and Lab on a Chip applications. However, the nature of flow within these channels is still unclear. There is evidence that the mean drift velocity in these channels deviates from the regular Navier-Stokes solution with `no slip boundary conditions. Understanding these effects, is not only of value for fundamental fluid mechanics interest, but it also has practical importance for the future development of microfluidic and nanofludic infrastructures. We propose a nano-NMR based setup for measuring the drift velocity near the surface of a microfludic channel in a non-intrusive fashion. We discuss different possible protocols, and provide a detailed analysis of the measurements sensitivity in each case. We show that the nano-NMR scheme outperforms current fluorescence based techniques.

قيم البحث

اقرأ أيضاً

Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures.
Nano-NMR spectroscopy with nitrogen-vacancy centers holds the potential to provide high resolution spectra of minute samples. This is likely to have important implications for chemistry, medicine and pharmaceutical engineering. One of the main hurdle s facing the technology is that diffusion of unpolarized liquid samples broadens the spectral lines thus limiting resolution. Experiments in the field are therefore impeded by the efforts involved in achieving high polarization of the sample which is a challenging endeavor. Here we examine a scenario where the liquid is confined to a small volume. We show that the confinement counteracts the effect of diffusion, thus overcoming a major obstacle to the resolving abilities of the NV-NMR spectrometer.
Over the years, an enormous effort has been made to establish nitrogen vacancy (NV) centers in diamond as easily accessible and precise magnetic field sensors. However, most of their sensing protocols rely on the application of bias magnetic fields, preventing their usage in zero- or low-field experiments. We overcome this limitation by exploiting the full spin $S=1$ nature of the NV center, allowing us to detect nuclear spin signals at zero- and low-field with a linearly polarized microwave field. As conventional dynamical decoupling protocols fail in this regime, we develop new robust pulse sequences and optimized pulse pairs, which allow us to sense temperature and weak AC magnetic fields and achieve an efficient decoupling from environmental noise. The sensing scheme is applicable to common NV center based setups and opens new frontiers for the application of NV centers as magnetic field sensors in the zero- and low-field regime.
Recently developed quantum algorithms suggest that in principle, quantum computers can solve problems such as simulation of physical systems more efficiently than classical computers. Much remains to be done to implement these conceptual ideas into a ctual quantum computers. As a small-scale demonstration of their capability, we simulate a simple many-fermion problem, the Fano-Anderson model, using liquid state Nuclear Magnetic Resonance (NMR). We carefully designed our experiment so that the resource requirement would scale up polynomially with the size of the quantum system to be simulated. The experimental results allow us to assess the limits of the degree of quantum control attained in these kinds of experiments. The simulation of other physical systems, with different particle statistics, is also discussed.
The Yang-Baxter equation is an important tool in theoretical physics, with many applications in different domains that span from condensed matter to string theory. Recently, the interest on the equation has increased due to its connection to quantum information processing. It has been shown that the Yang-Baxter equation is closely related to quantum entanglement and quantum computation. Therefore, owing to the broad relevance of this equation, besides theoretical studies, it also became significant to pursue its experimental implementation. Here, we show an experimental realization of the Yang-Baxter equation and verify its validity through a Nuclear Magnetic Resonance (NMR) interferometric setup. Our experiment was performed on a liquid state Iodotrifluoroethylene sample which contains molecules with three qubits. We use Controlled-transfer gates that allow us to build a pseudo-pure state from which we are able to apply a quantum information protocol that implements the Yang-Baxter equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا