ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of superconducting phase transition in InN

45   0   0.0 ( 0 )
 نشر من قبل Ting-Ting Kang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

InN superconductivity is very special among III-V semiconductors, because other III-V semiconductor (like GaAs, GaN, InP, InAs etc.) usually lacks strong covalent bonding and seldom shows superconductivity at low-temperature. In this paper, via current-voltage(I-V) measurement, we probe the superconducting phase transitions in InN. The possible connection with those chemical-unstable phase separated inclusions, like metallic indium or In2O3, was removed by HCl acid etching. It finds InN samples can show different phase transition behaviors. The vortex-glass (VG) to liquid transition, which is typical in type-II superconductors, is observed in the sample with large InN grain size. In contrast, the small grain-sized samples superconducting properties are sensitive to acid etching, shows a transition into a non-zero resistance state at the limit of temperature approaches zero. Our work suggests that the grain size and inter-grain coupling may be two key factors for realizing InN superconductivity. InN superconductivity can become robust and chemical stable if the grain size and inter-grain coupling both are large enough.

قيم البحث

اقرأ أيضاً

Using typical experimental techniques it is difficult to separate the effects of carrier density and disorder on the superconducting transition in two dimensions. Using a simple fabrication procedure based on metal layer dewetting, we have produced g raphene sheets decorated with a non-percolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. This allows us to study the superconducting transition at fixed disorder and variable carrier concentration. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor. Our simple self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism.
Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by Transmission Electron Microscopy (TEM) related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moire mappings, and RGB multilayered image reconstructions allows to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zincblende (zb) volumes, which acts as the intermediate phase between the initial InN-w and the most stable cubic In2O3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason of the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per pendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease of the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]
The discovery of topological insulator phase has ignited massive research interests in novel quantum materials. Topological insulators with superconductivity further invigorate the importance of materials providing the platform to study the interplay between these two unique states. However, the candidates of such materials are rare. Here, we report a systematic angle-resolved photoemission spectroscopy (ARPES) study of a superconducting material CaBi2 [Tc = 2 K], corroborated by the first principles calculations. Our study reveals the presence of Dirac cones with a topological protection in this system. Systematic topological analysis based on symmetry indicator shows the presence of weak topological indices in this material. Furthermore, our transport measurements show the presence of large magnetoresistance in this compound. Our results indicate that CaBi2 could potentially provide a material platform to study the interplay between superconductivity and topology.
When magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity1. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov stat es, appear inside the superconducting gap2-4. The search for Yu-Shiba-Rusinov states in different materials is intense, as they can be used as building blocks to promote Majorana modes5 suitable for topological quantum computing6. Here we report the first realization of Yu-Shiba-Rusinov states in graphene, a non-superconducting 2D material, and without the participation of magnetic atoms. We induce superconductivity in graphene by proximity effect7-9 brought by adsorbing nanometer scale superconducting Pb islands. Using scanning tunneling microscopy and spectroscopy we measure the superconducting proximity gap in graphene and we visualize Yu-Shiba-Rusinov states in graphene grain boundaries. Our results reveal the very special nature of those Yu-Shiba-Rusinov states, which extends more than 20 nm away from the grain boundaries. These observations provide the long sought experimental confirmation that graphene grain boundaries host local magnetic moments10-14 and constitute the first observation of Yu-Shiba-Rusinov states in a chemically pure system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا