ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Branch: Accelerating Resource Allocation in Wireless Networks

78   0   0.0 ( 0 )
 نشر من قبل Mengyuan Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Resource allocation in wireless networks, such as device-to-device (D2D) communications, is usually formulated as mixed integer nonlinear programming (MINLP) problems, which are generally NP-hard and difficult to get the optimal solutions. Traditional methods to solve these MINLP problems are all based on mathematical optimization techniques, such as the branch-and-bound (B&B) algorithm that converges slowly and has forbidding complexity for real-time implementation. Therefore, machine leaning (ML) has been used recently to address the MINLP problems in wireless communications. In this paper, we use imitation learning method to accelerate the B&B algorithm. With invariant problem-independent features and appropriate problem-dependent feature selection for D2D communications, a good auxiliary prune policy can be learned in a supervised manner to speed up the most time-consuming branch process of the B&B algorithm. Moreover, we develop a mixed training strategy to further reinforce the generalization ability and a deep neural network (DNN) with a novel loss function to achieve better dynamic control over optimality and computational complexity. Extensive simulation demonstrates that the proposed method can achieve good optimality and reduce computational complexity simultaneously.



قيم البحث

اقرأ أيضاً

In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D li nks. To enhance the throughput of spectrum sharing D2D links, which may be severely limited by the interference among D2D links, we enable the cooperation among some of the D2D links to eliminate the interference among them. We formulate a joint link scheduling and power allocation problem to maximize the overall throughput of cooperative D2D links (CDLs) and non-cooperative D2D links (NDLs), which is NP-hard. To solve the problem, we decompose it into two subproblems that maximize the sum rates of the CDLs and the NDLs, respectively. For CDL optimization, we propose a semi-orthogonal-based algorithm for joint user scheduling and power allocation. For NDL optimization, we propose a novel low-complexity algorithm to perform link scheduling and develop a Difference of Convex functions (D.C.) programming method to solve the non-convex power allocation problem. Simulation results show that the cooperative transmission can significantly increase both the number of served users and the overall system throughput.
Generalized Benders decomposition (GBD) is a globally optimal algorithm for mixed integer nonlinear programming (MINLP) problems, which are NP-hard and can be widely found in the area of wireless resource allocation. The main idea of GBD is decomposi ng an MINLP problem into a primal problem and a master problem, which are iteratively solved until their solutions converge. However, a direct implementation of GBD is time- and memory-consuming. The main bottleneck is the high complexity of the master problem, which increases over the iterations. Therefore, we propose to leverage machine learning (ML) techniques to accelerate GBD aiming at decreasing the complexity of the master problem. Specifically, we utilize two different ML techniques, classification and regression, to deal with this acceleration task. In this way, a cut classifier and a cut regressor are learned, respectively, to distinguish between useful and useless cuts. Only useful cuts are added to the master problem and thus the complexity of the master problem is reduced. By using a resource allocation problem in device-to-device communication networks as an example, we validate that the proposed method can reduce the computational complexity of GBD without loss of optimality and has strong generalization ability. The proposed method is applicable for solving various MINLP problems in wireless networks since the designs are invariant for different problems.
Cooperative transmission can greatly improve communication system performance by taking advantage of the broadcast nature of wireless channels. Most previous work on resource allocation for cooperation transmission is based on centralized control. In this paper, we propose two share auction mechanisms, the SNR auction and the power auction, to distributively coordinate the resource allocation among users. We prove the existence, uniqueness and effectiveness of the auction results. In particular, the SNR auction leads to a fair resource allocation among users, and the power auction achieves a solution that is close to the efficient allocation.
A novel framework of intelligent reflecting surface (IRS)-aided multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) network is proposed, where a base station (BS) serves multiple clusters with unfixed number of users in each clu ster. The goal is to maximize the sum rate of all users by jointly optimizing the passive beamforming vector at the IRS, decoding order and power allocation coefficient vector, subject to the rate requirements of users. In order to tackle the formulated problem, a three-step approach is proposed. More particularly, a long short-term memory (LSTM) based algorithm is first adopted for predicting the mobility of users. Secondly, a K-means based Gaussian mixture model (K-GMM) algorithm is proposed for user clustering. Thirdly, a deep Q-network (DQN) based algorithm is invoked for jointly determining the phase shift matrix and power allocation policy. Simulation results are provided for demonstrating that the proposed algorithm outperforms the benchmarks, while the performance of IRS-NOMA system is better than IRS-OMA system.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffi c requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا