ﻻ يوجد ملخص باللغة العربية
Recent progress in the field of multiferroics led to the discovery of many new materials in which ferroelectricity is induced by cycloidal spiral orders. The direction of the electric polarization is typically constrained by spin anisotropies and magnetic field. Here, we report that the mixed rare-earth manganite, Gd$_{0.5}$Dy$_{0.5}$MnO$_3$, exhibits a spontaneous electric polarization along a general direction in the crystallographic ac-plane, which is suppressed below 10 K but re-emerges in an applied magnetic field. Neutron diffraction measurements show that the polarization direction results from a large tilt of the spiral plane with respect to the crystallographic axes and that the suppression of ferroelectricity is caused by the transformation of a cycloidal spiral into a helical one, a unique property of this rare-earth manganite. The freedom in the orientation of the spiral plane allows for a fine magnetic control of ferroelectricity, i.e. a rotation as well as a strong enhancement of the polarization depending on the magnetic field direction. We show that this unusual behavior originates from the coupling between the transition metal and rare-earth magnetic subsystems.
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability
We present a dynamical mean-field theory (DMFT) study of the charge and orbital correlations in finite-size La$_{0.5}$Ca$_{0.5}$MnO$_3$ (LCMO) nanoclusters. Upon nanostructuring LCMO to clusters of 3 nm diameter, the size reduction induces an insulat
We report low temperature specific heat measurements of Pr$_{1-x}$Ca$_{x}$MnO$_{3}$ ($0.3leq x leq 0.5$) and La$_{0.5}$Ca$_{0.5}$MnO$_{3}$ with and without applied magnetic field. An excess specific heat, $C^{prime}(T)$, of non-magnetic origin associ
X-ray resonant magnetic scattering studies of rare earth magnetic ordering were performed on perovskite manganites RMnO3 (R = Dy, Gd) in an applied magnetic field. The data reveal that the field-induced three-fold polarization enhancement for H || a
Dc magnetic measurements across the charge ordering (CO) transition temperature (T$_{CO}$) in polycrystalline Pr$_{0.5}$Ca$_{0.5}$Mn$_{0.975}$Al$_{0.025}$O$_3$ have been performed under simultaneous influence of external hydrostatic pressure (P) and