ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Sulfur Depletion in Interstellar Clouds

107   0   0.0 ( 0 )
 نشر من قبل Jacob Laas
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elemental depletion of interstellar sulfur from the gas phase has been a recurring challenge for astrochemical models. Observations show that sulfur remains relatively non-depleted with respect to its cosmic value throughout the diffuse and translucent stages of an interstellar molecular cloud, but its gas-phase constituents cannot account for this cosmic value towards higher-density environments. We have attempted to address this issue by modeling the evolution of an interstellar cloud from its pristine state as a diffuse atomic cloud to a molecular environment of much higher density, using a gas/grain astrochem. code and an enhanced sulfur reaction network. A common gas/grain reaction network has been systematically updated and greatly extended based on previous lit. and models, with a focus on the grain chemistry and processes. A simple model was used to benchmark the resulting network updates, and the results of the model were compared to typical astronomical observations sourced from the literature. Our new gas/grain model is able to reproduce the elemental depletion of sulfur, whereby sulfur can be depleted from the gas-phase by two orders of magnitude, and this process may occur under dark cloud conditions if the cloud has a chemical age of at least 1 Myrs. The resulting mix of sulfur-bearing species on the grain ranges across all the most common chemical elements (H/C/N/O), not dissimilar to the molecules observed in cometary environments. Notably, this mixture is not dominated simply by H2S, unlike all other current astrochem. models. Despite our relatively simple physical model, most of the known gas-phase S-bearing molecular abundances are accurately reproduced under dense conditions, however they are not expected to be the primary molecular sinks of sulfur. Our model predicts that most of the missing sulfur is in the form of organo-sulfur species trapped on grains.



قيم البحث

اقرأ أيضاً

Hydride molecules lie at the base of interstellar chemistry, but the synthesis of sulfuretted hydrides is poorly understood. Motivated by new observations of the Orion Bar PDR - 1 resolution ALMA images of SH+; IRAM 30m detections of H2S, H2S34, and H2S33; H3S+ (upper limits); and SOFIA observations of SH - we perform a systematic study of the chemistry of S-bearing hydrides. We determine their column densities using coupled excitation, radiative transfer as well as chemical formation and destruction models. We revise some of the key gas-phase reactions that lead to their chemical synthesis. This includes ab initio quantum calculations of the vibrational-state-dependent reactions SH+ + H2 <-> H2S+ + H and S + H2 <-> SH + H. We find that reactions of UV-pumped H2 (v>1) with S+ explain the presence of SH+ in a high thermal-pressure gas component, P_th~10^8 cm^-3 K, close to the H2 dissociation front. However, subsequent hydrogen abstraction reactions of SH+, H2S+, and S with vibrationally excited H2, fail to ultimately explain the observed H2S column density (~2.5x10^14 cm^-2, with an ortho-to-para ratio of 2.9+/-0.3). To overcome these bottlenecks, we build PDR models that include a simple network of grain surface reactions leading to the formation of solid H2S (s-H2S). The higher adsorption binding energies of S and SH suggested by recent studies imply that S atoms adsorb on grains (and form s-H2S) at warmer dust temperatures and closer to the UV-illuminated edges of molecular clouds. Photodesorption and, to a lesser extent, chemical desorption, produce roughly the same H2S column density (a few 10^14 cm-^2) and abundance peak (a few 10^-8) nearly independently of n_H and G_0. This agrees with the observed H2S column density in the Orion Bar as well as at the edges of dark clouds without invoking substantial depletion of elemental sulfur abundances.
76 - Jonathan C. Tan 2015
I review (1) Physics of Star Formation & Open Questions; (2) Structure & Dynamics of Star-Forming Clouds & Young Clusters; (3) Star Formation Rates: Observations & Theoretical Implications.
68 - H.Z. Yu , J.S. Zhang , C. Henkel 2020
We present observations of $^{12}$C$^{32}$S, $^{12}$C$^{34}$S, $^{13}$C$^{32}$S and $^{12}$C$^{33}$S J=2$-$1 lines toward a large sample of massive star forming regions by using the Arizona Radio Observatory 12-m telescope and the IRAM,30-m. Taking n ew measurements of the carbon $^{12}$C/$^{13}$C ratio, the $^{32}$S$/$$^{34}$S isotope ratio was determined from the integrated $^{13}$C$^{32}$S/$^{12}$C$^{34}$S line intensity ratios for our sample. Our analysis shows a $^{32}$S$/$$^{34}$S gradient from the inner Galaxy out to a galactocentric distance of 12,kpc. An unweighted least-squares fit to our data yields $^{32}$S$/$$^{34}$S = (1.56 $pm$ 0.17)$rm D_{rm GC}$ + (6.75 $pm$ 1.22) with a correlation coefficient of 0.77. Errors represent 1$sigma$ standard deviations. Testing this result by (a) excluding the Galactic center region, (b) excluding all sources with C$^{34}$S opacities $>$ 0.25, (c) combining our data and old data from previous study, and (d) using different sets of carbon isotope ratios leads to the conclusion that the observed $^{32}$S$/$$^{34}$S gradient is not an artefact but persists irrespective of the choice of the sample and carbon isotope data. A gradient with rising $^{32}$S$/$$^{34}$S values as a function of galactocentric radius implies that the solar system ratio should be larger than that of the local interstellar medium. With the new carbon isotope ratios we obtain indeed a local $^{32}$S$/$$^{34}$S isotope ratio about 10$%$ below the solar system one, as expected in case of decreasing $^{32}$S$/$$^{34}$S ratios with time and increased amounts of stellar processing. However, taking older carbon isotope ratios based on a lesser amount of data, such a decrease is not seen. No systematic variation of $^{34}$S$/$$^{33}$S ratios along galactocentric distance was found.
192 - Alexei Ivlev 2015
The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and p hotoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(mathrm{H_2})$ between $sim10^4$ cm$^{-3}$ and $sim10^6$ cm$^{-3}$. The charging effect of CR is of generic nature, and therefore is expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary discs.
Context. Insight into the conditions that drive the physics and chemistry in interstellar clouds is gained from determining the abundance and charge state of their components. Aims. We propose an evaluation of the C60:C60+ ratio in diffuse and transl ucent interstellar clouds that exploits electronic absorption bands so as not to rely on ambiguous IR emission measurements. Methods. The ratio is determined by analyzing archival spectra and literature data. Information on the cation population is obtained from published characteristics of the main diffuse interstellar bands attributed to C60+ and absorption cross sections already reported for the vibronic bands of the cation. The population of neutral molecules is described in terms of upper limit because the relevant vibronic bands of C60 are not brought out by observations. We revise the oscillator strengths reported for C60 and measure the spectrum of the molecule isolated in Ne ice to complete them. Results. We scale down the oscillator strengths for absorption bands of C60 and find an upper limit of approximately 1.3 for the C60:C60+ ratio. Conclusions. We conclude that the fraction of neutral molecules in the buckminsterfullerene population of diffuse and translucent interstellar clouds may be notable despite the non-detection of the expected vibronic bands. More certainty will require improved laboratory data and observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا