ترغب بنشر مسار تعليمي؟ اضغط هنا

Tips learned from panchromatic modeling of AGNs

66   0   0.0 ( 0 )
 نشر من قبل Y. Sophia Dai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y.Sophia Dai




اسأل ChatGPT حول البحث

I will review the tips learned from panchromatic modeling of active galactic nuclei (AGNs), based on our recent work to study the relationship between AGN and star formation (SF). Several AGN SED models are compared, and signifficant AGN contribution is found in the IR luminosities and corresponding star formation rate (SFR). I will review the AGN-SF relation and how different parameters and sample selections affect the observed correlation. I will then report on the constant ratio discovered between the SFR and the black hole mass accretion rate (BHAR), and their implications on the gas supply and galaxy formation history of these systems. Caveats and important questions to answer are summarized at the end.



قيم البحث

اقرأ أيضاً

We consider the morphology, stellar populations, structure and AGN activity of 10 post-starburst (K+A) galaxies with HST observations, full spectral coverage in the optical, spectral energy distributions from 0.2 to 160 $mu$m, X-ray and radio data. O ur results show that the PSG phenomenon is related to mergers and interactions, and that star formation was likely triggered during close passes prior to final coalescence. We performed a detailed qualitative analysis of the observed light distribution, including low-surface brightness tidal features and color profiles, in high-resolution multi-band imaging with HST. We find evidence that star formation was centrally concentrated and that quenching took place from the inside-out, consistent with the occurrence of a feedback episode. Most of our PSGs contain massive bulges and therefore should host supermassive black holes. We search for AGN activity in spectra (line ratios), optical variability, X-ray emission at 0.5--7.0 KeV and radio emission at 20cm: all four lines of evidence show there is no active AGN accreting at more than 0.1% of the Eddington luminosity. We conclude that mergers may be a necessary, but not a sufficient condition, for AGN activity and that they are not likely to be important in our objects. If PSGs are good test cases for quenching and evolution to the red sequence, AGNs may play a smaller role than expected.
In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nuclei (AGN) is crucial. However, AGNs are often missed in optical, UV and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (mid-IR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g., $WISE$ and $Spitzer$, have gaps between the mid-IR filters. Therefore, star forming galaxy (SFG)-AGN diagnostics in the mid-IR were limited. The $AKARI$ satellite has a unique continuous 9-band filter coverage in the near to mid-IR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution (SED) modelling software, CIGALE, to find AGNs in mid-IR. We found 126 AGNs in the NEP-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g., $JWST$, we expect to find more AGNs with our method.
The study of the space density of bright AGNs at $z>4$ has been subject to extensive effort given its importance for the estimate of the cosmological ionizing emissivity and growth of supermassive black holes. In this context we have recently derived high space densities of AGNs at $zsim 4$ and $-25<M_{1450}<-23$ in the COSMOS field from a spectroscopically complete sample. In the present paper we attempt to extend the knowledge of the AGN space density at fainter magnitudes ($-22.5<M_{1450}<-18.5$) in the $4<z<6.1$ redshift interval by means of a multiwavelength sample of galaxies in the CANDELS GOODS-South, GOODS-North and EGS fields. We use an updated criterion to extract faint AGNs from a population of NIR (rest-frame UV) selected galaxies at photometric $z>4$ showing X-ray detection in deep Chandra images available for the three CANDELS fields. We have collected a photometric sample of 32 AGN candidates in the selected redshift interval, six of which having spectroscopic redshifts. Including our COSMOS sample as well as other bright QSO samples allows a first guess on the shape of the UV luminosity function at $zsim 4.5$. The resulting emissivity and photoionization rate appear consistent with that derived from the photoionization level of the intergalactic medium at $zsim 4.5$. An extrapolation to $zsim 5.6$ suggests an important AGN contribution to the IGM ionization if there are no significant changes in the shape of the UV luminosity function.
Using data from the Wide-field Infrared Survey Explorer (WISE) we show that the mid infrared (MIR) colors of low-luminosity AGNs (LLAGNs) are significanlty different from those of post-asymptotic giant branch stars (PAGBs). This is due to a differenc e in spectral energy distribution (SEDs), the LLAGNs showing a flat component due to an AGN. Consistent with this interpretation we show that in a MIR color-color diagram the LINERs and the Seyfert~2s follow a power law with specific colors that allow to distinguish them from each other, and from star forming galaxies, according to their present level of star formation. Based on this result we present a new diagnostic diagram in the MIR that confirms the classification obtained in the optical using standard diagnostic diagrams, clearly identifying LINERs and LLAGNs as genuine AGNs.
The spatial clustering of active galactic nuclei (AGNs) is considered to be one of the important diagnostics for the understanding of the underlying processes behind their activities complementary to measurements of the luminosity function (LF). We a nalyse the AGN clustering from a recent semi-analytic model performed on a large cosmological $N$-body simulation covering a cubic gigaparsec comoving volume. We have introduced a new time-scale of gas accretion on to the supermassive black holes to account for the loss of the angular momentum on small scales, which is required to match the faint end of the observed X-ray LF. The large simulation box allows us accurate determination of the auto-correlation function of the AGNs. The model prediction indicates that this time-scale plays a significant role in allowing massive haloes to host relatively faint population of AGNs, leading to a higher bias factor for those AGNs. The model predictions are in agreement with observations of X-ray selected AGNs in the luminosity range $10^{41.5}~mathrm{erg} mathrm{s}^{-1} leq L_{2-10mathrm{keV}} leq 10^{44.5}~mathrm{erg} mathrm{s}^{-1}$, with the typical host halo mass of $10^{12.5-13.5} h^{-1},{rm M}_{odot}$ at $z lesssim 1$. This result shows that the observational clustering measurements impose an independent constraint on the accretion time-scale complementary to the LF measurements. Moreover, we find that not only the effective halo mass corresponding to the overall bias factor, but the extended shape of the predicted AGN correlation function shows remarkable agreement with those from observations. Further observational efforts towards the low luminosity end at $z sim 1$ would give us stronger constraints on the triggering mechanisms of AGN activities through their clustering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا