ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave excitations and magnetization dynamics of strip domain films

227   0   0.0 ( 0 )
 نشر من قبل Derang Cao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FeNi films with the stripe domain pattern are prepared by electrodeposition and sputtering methods. The composition, thickness, phase structure, magnetic domain, static magnetic parameters, and quality factor, as well as dynamic properties of the two films, are respectively performed. The results show the spin state in stripe domain were highly dependent on the direction of stripe domain, and the dynamic microwave properties are selectively excited, emerging the dynamic hysteresis, the acoustic mode, optical mode and perpendicular spin standing wave mode response. The results are further studied by micromagnetic simulation to illuminate the spin contribution of stripe domain for the different modes, and finally using the modified resonance equations to descript the microwave excitations of different modes as well as their resonance line width and permeability. The results may provide a method and thought for the possible applications of stripe domain in microwave excitation spintronics.



قيم البحث

اقرأ أيضاً

Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices , in particular based on domain wall (DW) motion. In this work, we report the study of STT driven DW motion in ferrimagnetic manganese nickel nitride (Mn4-xNixN) films, in which a fine adjustment of the Ni content allows setting the magnetic compensation at room temperature. The reduced magnetization, combined with the large spin polarization of conduction electrons, strongly enhances the STT so that domain wall velocities approaching 3000 m/s can be obtained for Ni compositions close to the compensation point. In addition, a reversal of the domain wall motion direction is observed when the magnetic compensation composition is crossed. This striking feature, related to the change of direction of the spin polarization with respect to that of the net magnetization, is clarified by ab initio band structure calculations.
298 - W.-T. Lee 2001
We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of its lateral domains. This technique is applied to elucidate the mechanism of the magnetization reversal of an exchange-biased Co/CoO bilayer. The reversal process above the blocking temperature is governed by uniaxial domain switching, while below the blocking temperature the reversal of magnetization for the trained sample takes place with substantial domain rotation.
Yttrium Iron Garnet (YIG) and bismuth (Bi) substituted YIG (Bi0.1Y2.9Fe5O12, BYG) films are grown in-situ on single crystalline Gadolinium Gallium Garnet (GGG) substrates [with (100) and (111) orientations] using pulsed laser deposition (PLD) techniq ue. As the orientation of the Bi-YIG film changes from (100) to (111), the lattice constant is enhanced from 12.384 {AA} to 12.401 {AA} due to orientation dependent distribution of Bi3+ ions at dodecahedral sites in the lattice cell. Atomic force microscopy (AFM) images show smooth film surfaces with roughness 0.308 nm in Bi-YIG (111). The change in substrate orientation leads to the modification of Gilbert damping which, in turn, gives rise to the enhancement of ferromagnetic resonance (FMR) line width. The best values of Gilbert damping are found to be (0.54)*10-4, for YIG (100) and (6.27)*10-4, for Bi-YIG (111) oriented films. Angle variation measurements of the Hr are also performed, that shows a four-fold symmetry for the resonance field in the (100) grown film. In addition, the value of effective magnetization (4{pi}Meff) and extrinsic linewidth ({Delta}H0) are observed to be dependent on substrate orientation. Hence PLD growth can assist single-crystalline YIG and BYG films with a perfect interface that can be used for spintronics and related device applications.
We demonstrate reproducible voltage induced non-volatile switching of the magnetization in an epitaxial thin Fe81Ga19 film. Switching is induced at room temperature and without the aid of an external magnetic field. This is achieved by the modificati on of the magnetic anisotropy by mechanical strain induced by a piezoelectric transducer attached to the layer. Epitaxial Fe81Ga19 is shown to possess the favourable combination of cubic magnetic anisotropy and large magnetostriction necessary to achieve this functionality with experimentally accessible levels of strain. The switching of the magnetization proceeds by the motion of magnetic domain walls, also controlled by the voltage induced strain.
Using the angular dependence of the planar Hall effect in GaMnAs ferromagnetic films, we were able to determine the distribution of magnetic domain pinning fields in this material. Interestingly, there is a major difference between the pinning field distribution in as-grown and in annealed films, the former showing a strikingly narrower distribution than the latter. This conspicuous difference can be attributed to the degree of non-uniformity of magnetic anisotropy in both types of films. This finding provides a better understanding of the magnetic domain landscape in GaMnAs that has been the subject of intense debate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا