ﻻ يوجد ملخص باللغة العربية
Recognizing abnormal events such as traffic violations and accidents in natural driving scenes is essential for successful autonomous driving and advanced driver assistance systems. However, most work on video anomaly detection suffers from two crucial drawbacks. First, they assume cameras are fixed and videos have static backgrounds, which is reasonable for surveillance applications but not for vehicle-mounted cameras. Second, they pose the problem as one-class classification, relying on arduously hand-labeled training datasets that limit recognition to anomaly categories that have been explicitly trained. This paper proposes an unsupervised approach for traffic accident detection in first-person (dashboard-mounted camera) videos. Our major novelty is to detect anomalies by predicting the future locations of traffic participants and then monitoring the prediction accuracy and consistency metrics with three different strategies. We evaluate our approach using a new dataset of diverse traffic accidents, AnAn Accident Detection (A3D), as well as another publicly-available dataset. Experimental results show that our approach outperforms the state-of-the-art.
We focus on first-person action recognition from egocentric videos. Unlike third person domain, researchers have divided first-person actions into two categories: involving hand-object interactions and the ones without, and developed separate techniq
In this paper, we present a new feature representation for first-person videos. In first-person video understanding (e.g., activity recognition), it is very important to capture both entire scene dynamics (i.e., egomotion) and salient local motion ob
In a world of pervasive cameras, public spaces are often captured from multiple perspectives by cameras of different types, both fixed and mobile. An important problem is to organize these heterogeneous collections of videos by finding connections be
We introduce an approach for pre-training egocentric video models using large-scale third-person video datasets. Learning from purely egocentric data is limited by low dataset scale and diversity, while using purely exocentric (third-person) data int
In the advent of wearable body-cameras, human activity classification from First-Person Videos (FPV) has become a topic of increasing importance for various applications, including in life-logging, law-enforcement, sports, workplace, and healthcare.