ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2

569   0   0.0 ( 0 )
 نشر من قبل Noam Morali
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bulk-surface correspondence in Weyl semimetals assures the formation of topological Fermi-arc surface bands whose existence is guaranteed by bulk Weyl nodes. By investigating three distinct surface terminations of the ferromagnetic semimetal Co3Sn2S2 we verify spectroscopically its classification as a time reversal symmetry broken Weyl semimetal. We show that the distinct surface potentials imposed by three different terminations modify the Fermi-arc contour and Weyl node connectivity. On the Sn surface we identify intra-Brillouin zone Weyl node connectivity of Fermi-arcs, while on Co termination the connectivity is across adjacent Brillouin zones. On the S surface Fermi-arcs overlap with non-topological bulk and surface states that ambiguate their connectivity and obscure their exact identification. By these we resolve the topologically protected electronic properties of a Weyl semimetal and its unprotected ones that can be manipulated and engineered.

قيم البحث

اقرأ أيضاً

We experimentally investigate charge transport through the interface between a niobium superconductor and a three-dimensional WTe$_2$ Weyl semimetal. In addition to classical Andreev reflection, we observe sharp non-periodic subgap resistance resonan ces. From an analysis of their positions, magnetic field and temperature dependencies, we can interpret them as an analog of Tomasch oscillations for transport along the topological surface state across the region of proximity-induced superconductivity at the Nb-WTe$_2$ interface. Observation of distinct geometrical resonances implies a specific transmission direction for carriers, which is a hallmark of the Fermi arc surface states.
In magnetic Weyl semimetals, fluctuations of the local magnetization may generate gauge fields that couple to the chiral charge of emergent Weyl fermions. Recent theoretical studies have proposed that the temporal and spatial-dependent magnetization associated with propagating domain walls (DWs) generates pseudo electric and magnetic fields that drive novel phenomena such as a current of real charge. Here we report a key step in testing these predictions: characterizing the propagation of DWs in the Weyl semimetal Co3Sn2S2 using scanning magneto-optic Kerr microscopy. We observe an unexpected deep minimum in the temperature dependence of the DW mobility, $mu$, indicating a crossover between two regimes of propagation. The nonmonotonic $mu(T)$ is evidence of a phase transition in the topology of the DW well below the Curie temperature, in which the magnetization texture changes from continuous rotation (elliptical wall) to a linear wall whose unidirectional magnetization passes through zero at the wall center.
A signature property of Weyl semimetals is the existence of topologically protected surface states - arcs in momentum space that connect Weyl points in the bulk. However, the presence of bulks states makes detection of surface contributions to the tr ansport challenging. Here we present a magnetoresistance study of high-quality samples of the prototypical Weyl semimetal, TaAs. By measuring the Shubnikov de Haas effect, we reveal the presence of a two-dimensional cyclotron orbit. This orbit is quantitatively consistent with the interference of coherent quasiparticles traversing two distinct Fermi arcs on the [001] crystallographic surface. The observation of this effect suggests that high magnetic fields can be used to study not only the transport properties of Fermi arcs, but also the interference of their quantum mechanical wavefunctions.
130 - Yue Zheng , Wei Chen , D. Y. Xing 2020
Fermi arc surface states are the hallmark of Weyl semimetals, whose identification is usually challenged by their coexistence with gapless bulk states. Surface transport measurements by fabricating setups on the sample boundary provide a natural solu tion to this problem. Here, we study the Andreev reflection (AR) in a planar normal metal-superconductor junction on the Weyl semimetal surface with a pair of Fermi arcs. For a conserved transverse momentum, the occurrence of normal reflection depends on the relative orientation between the Fermi arcs and the normal of the junction, which is a direct result of the disconnected Fermi arcs. Consequently, a crossover from the suppressed to perfect AR occurs with varying the orientation of the planar junction, giving rise to a change from double-peak to plateau structure in conductance spectra. Moreover, such a crossover can be facilitated by imposing a magnetic field, making electrons slide along the Fermi arcs so as to switch between two regimes of the AR. Our results provide a decisive signature for the detection of Fermi arcs and open the possibilities of exploring novel phenomenology through their interplay with superconductivity.
The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to smooth deformations that preserve the orientation of the equi-energy contour. Here we show that a Weyl semimetal confined to a thin film with an in-plan e magnetization and broken spatial inversion symmetry can have a topologically distinct Fermi surface that is twisted into a $mbox{figure-8}$ $-$ opposite orientations are coupled at a crossing which is protected up to an exponentially small gap. The twisted spectral response to a perpendicular magnetic field $B$ is distinct from that of a deformed Fermi circle, because the two lobes of a mbox{figure-8} cyclotron orbit give opposite contributions to the Aharonov-Bohm phase. The magnetic edge channels come in two counterpropagating types, a wide channel of width $beta l_m^2propto 1/B$ and a narrow channel of width $l_mpropto 1/sqrt B$ (with $l_m=sqrt{hbar/eB}$ the magnetic length and $beta$ the momentum separation of the Weyl points). Only one of the two is transmitted into a metallic contact, providing unique magnetotransport signatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا