ترغب بنشر مسار تعليمي؟ اضغط هنا

Using natural language processing techniques to extract information on the properties and functionalities of energetic materials from large text corpora

134   0   0.0 ( 0 )
 نشر من قبل Daniel Elton
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The number of scientific journal articles and reports being published about energetic materials every year is growing exponentially, and therefore extracting relevant information and actionable insights from the latest research is becoming a considerable challenge. In this work we explore how techniques from natural language processing and machine learning can be used to automatically extract chemical insights from large collections of documents. We first describe how to download and process documents from a variety of sources - journal articles, conference proceedings (including NTREM), the US Patent & Trademark Office, and the Defense Technical Information Center archive on archive.org. We present a custom NLP pipeline which uses open source NLP tools to identify the names of chemical compounds and relates them to function words (underwater, rocket, pyrotechnic) and property words (elastomer, non-toxic). After explaining how word embeddings work we compare the utility of two popular word embeddings - word2vec and GloVe. Chemical-chemical and chemical-application relationships are obtained by doing computations with word vectors. We show that word embeddings capture latent information about energetic materials, so that related materials appear close together in the word embedding space.



قيم البحث

اقرأ أيضاً

In the era of big data, the advancement, improvement, and application of algorithms in academic research have played an important role in promoting the development of different disciplines. Academic papers in various disciplines, especially computer science, contain a large number of algorithms. Identifying the algorithms from the full-text content of papers can determine popular or classical algorithms in a specific field and help scholars gain a comprehensive understanding of the algorithms and even the field. To this end, this article takes the field of natural language processing (NLP) as an example and identifies algorithms from academic papers in the field. A dictionary of algorithms is constructed by manually annotating the contents of papers, and sentences containing algorithms in the dictionary are extracted through dictionary-based matching. The number of articles mentioning an algorithm is used as an indicator to analyze the influence of that algorithm. Our results reveal the algorithm with the highest influence in NLP papers and show that classification algorithms represent the largest proportion among the high-impact algorithms. In addition, the evolution of the influence of algorithms reflects the changes in research tasks and topics in the field, and the changes in the influence of different algorithms show different trends. As a preliminary exploration, this paper conducts an analysis of the impact of algorithms mentioned in the academic text, and the results can be used as training data for the automatic extraction of large-scale algorithms in the future. The methodology in this paper is domain-independent and can be applied to other domains.
386 - Mariya Toneva , Leila Wehbe 2019
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa tions learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.
We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread a cross ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, bag of bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with 309 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights.
Researchers worldwide are seeking to repurpose existing drugs or discover new drugs to counter the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A promising source of candidates for such studies is molecules that hav e been reported in the scientific literature to be drug-like in the context of coronavirus research. We report here on a project that leverages both human and artificial intelligence to detect references to drug-like molecules in free text. We engage non-expert humans to create a corpus of labeled text, use this labeled corpus to train a named entity recognition model, and employ the trained model to extract 10912 drug-like molecules from the COVID-19 Open Research Dataset Challenge (CORD-19) corpus of 198875 papers. Performance analyses show that our automated extraction model can achieve performance on par with that of non-expert humans.
Misinformation of COVID-19 is prevalent on social media as the pandemic unfolds, and the associated risks are extremely high. Thus, it is critical to detect and combat such misinformation. Recently, deep learning models using natural language process ing techniques, such as BERT (Bidirectional Encoder Representations from Transformers), have achieved great successes in detecting misinformation. In this paper, we proposed an explainable natural language processing model based on DistilBERT and SHAP (Shapley Additive exPlanations) to combat misinformation about COVID-19 due to their efficiency and effectiveness. First, we collected a dataset of 984 claims about COVID-19 with fact checking. By augmenting the data using back-translation, we doubled the sample size of the dataset and the DistilBERT model was able to obtain good performance (accuracy: 0.972; areas under the curve: 0.993) in detecting misinformation about COVID-19. Our model was also tested on a larger dataset for AAAI2021 - COVID-19 Fake News Detection Shared Task and obtained good performance (accuracy: 0.938; areas under the curve: 0.985). The performance on both datasets was better than traditional machine learning models. Second, in order to boost public trust in model prediction, we employed SHAP to improve model explainability, which was further evaluated using a between-subjects experiment with three conditions, i.e., text (T), text+SHAP explanation (TSE), and text+SHAP explanation+source and evidence (TSESE). The participants were significantly more likely to trust and share information related to COVID-19 in the TSE and TSESE conditions than in the T condition. Our results provided good implications in detecting misinformation about COVID-19 and improving public trust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا